Способ стимулирования прорастания семянПатент на изобретение №: 2169177 Автор: Резчиков В.Г., Чурмасов А.В., Эльберт Г.К., Гаврилова А.А. Патентообладатель: Нижегородская государственная сельскохозяйственная академия, ОАО "Линдовская птицефабрика - племенной завод" Дата публикации: 20 Июня, 2001 Начало действия патента: 7 Мая, 1999 Адрес для переписки: 603107, г.Нижний Новгород, пр-т Гагарина, 97, НГСХА, патентный отдел ИзображенияИзобретение относится к пищевой промышленности и сельскому хозяйству, может быть использовано в пивоварении, при получении пищевых добавок и в растениеводстве. Способ стимулирования прорастания семян включает замачивание и проращивание семян. Причем замачивание семян производят в озонированной воде, полученной путем пропускания через воду озоновоздушной смеси с концентрацией озона 150-900 мг/м3 в течение 10-30 мин. В результате этого достигается увеличение энергии прорастания и сокращение сроков проращивания семян. 5 табл. ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к области пищевой промышленности и сельского хозяйства, может быть использовано, в частности, в пивоварении, при получении пищевых добавок и в растениеводстве. Известен способ обработки семян с целью стимуляции прорастания, включающий обработку ультрафиолетовым излучением при величине поверхностной плотности потока 0,05 - 0,5 кВт/м2 (Авт. свид. N 1394480, A 01 C 1/00, 1986). Данный способ недостаточно ускоряет процесс прорастания, т.к. ультрафиолетовое излучение используется в узком пределе плотности потока, и небольшие отклонения от него могут привести к снижению стимулирующего эффекта. Известен способ предпосевной обработки семян, включающий замачивание семян с одновременной обработкой семян в жидкости электромагнитным и звуковыми полями низких частот (Авт. свид. N 1667676, A 01 C 7/00, 1989). Данный способ достаточно трудоемок и требует дополнительных энерго- и ресурсозатрат. Наиболее близким является способ проращивания семян, включающий их предварительную обработку в водородно-кислородной среде в течение 10 - 40 мкс при 2000 - 6000 K и давлении 0,5 - 2,2 МПа (Авт. свид. N 1047952, C 12 C 1/00, 1983). Однако указанный способ трудоемок, требует дополнительных энергозатрат и повышает энергию прорастания незначительно. В сельском хозяйстве и пищевой промышленности существует потребность в расширении ассортимента простых в исполнении и экологически чистых способов, повышающих всхожесть семян и сокращающих сроки их прорастания. Решение поставленной задачи достигается тем, что согласно способу стимулирования прорастания семян, включающему замачивание и проращивание, замачивание ведут в течение 6 часов озонированной водой, полученной путем пропускания через воду озоно-воздушной смеси с концентрацией озона 150 - 900 мг/м3 в течение 10 - 30 мин. Способ осуществляется следующим образом. Озон получают методом барьерного разряда из кислорода воздуха. Полученной озоно-воздушной смесью с заданной концентрацией озона воду обрабатывают в течение 10 - 30 мин. Семена на время замачивания помещают в озонированную воду, а затем проращивают. Пример 1. Семена пшеницы, взятые в пятикратной повторности, замачивают в течение суток в озонированной воде, полученной путем пропускания через дистиллированную воду озоно-воздушной смеси с концентрацией 150, 300, 900 мг/м3 в течение 10 мин. Контрольные семена замачивают в дистиллированной воде. Все семена проращивают в течение двух суток, после чего определяют энергию прорастания (табл. 1). Как видно из табл. 1, энергия прорастания во всех вариантах опыта была выше контрольного значения 6 - 16%. Пример 2. Семена пшеницы по 100 шт. для каждого варианта замачивают в озонированной воде, полученной путем пропускания через дистиллированную воду озоно-воздушной смеси с концентрацией 150 и 300 мг/м3 в течение 15 мин. Контрольные семена замачивают в дистиллированной воде. После замачивания семена проращивают. Время замачивания варьируют от 6 до 18 ч, время прорастания - от 15 до 24 ч (табл. 2). По истечении сроков проращивания производили подсчет наклюнувшихся и проросших семян. Из табл. 2 следует, что сокращение сроков опытных семян не приводит к снижению количества наклюнувшихся и проросших семян, которое, наоборот, во всех случаях выше контрольного уровня. Пример 3. Семена ячменя с. Зазерский, взятые в пятикратной повторности, замачивают в озонированной воде, которую получают путем обработки дистиллированной воды озоно-воздушной смесью с концентрацией озона 150, 300 и 900 мг/м3 в течение 30 мин, затем проращивают. Контрольные семена замачивают в дистиллированной воде. На третьи сутки опыта проверяют энергию прорастания и измеряют длину проростков для определения процента ростовых параметров к контролю. Процент ростовых параметров определяется по формуле где Lo - длина опытных проростков, Lk - длина контрольных проростков. Результаты опытов приведены в табл. 3. Опытные проростки меньше поражались микрофлорой, а при концентрации озона 900 мг/м3 было отмечено достоверное превышение по массе над контролем. Энергия прорастания во всех вариантах опыта превышала контрольный уровень на 3 - 9%. Пример 4. Семена ячменя с. Зазерский по 100 шт. для каждого варианта замачивают в течение 6 ч. Озонированную воду получают путем пропускания озоно-воздушной смеси с концентрацией озона 300 мг/м3 в течение 15 и 30 мин через дистиллированную воду. Замачивание контрольных семян проводят в дистиллированной воде. Результаты, полученные спустя 12 ч проращивания (общее время проращивания составляет 6 ч замачивания + 12 ч проращивания = 18 ч), отражены в табл. 4. Предлагаемый способ стимулирования прорастания семян технически прост, экономичен, дает возможность повысить энергию прорастания для семян пшеницы на 6 - 16%, для семян ячменя на 3 - 9% и сократить длительность процесса проращивания в 1,5 - 2 раза (табл. 5). Кроме того, проращенное зерно меньше поражается микроорганизмами.ФОРМУЛА ИЗОБРЕТЕНИЯСпособ стимулирования прорастания семян, включающий замачивание и проращивание семян, отличающийся тем, что воду для замачивания семян обрабатывают озоновоздушной смесью с концентрацией озона 150 - 900 мг/м3 в течение 10 - 30 мин и замачивают семена в течение 6 ч.Популярные патенты: 2195644 Монитор для определения качества зерна ... ... 2305931 Способ регенерации растений клевера лугового при генетической трансформации ... 20,4±0,28 20,4±0,280 025 5,0±0,97РП116 65091,0±2,02 4,71±1,014,6±0,66 396,0±0,935 0,76±0,347 1,07±0,4020,3±0,21 538,15±1,07 РП150 - растения-регенеранты, полученные методом прямой регенерации (сорт Ранний 2) РП116 - растения-регенеранты, полученные из каллусной ткани (сорт Ранний2) Таблица 2. Сравнительная оценка исходных генотипов и растений-регенерантов, полученных методом прямой регенерации ПризнакИсходный сорт Ранний 2 Исходный генотип РП 150Растения-регенеранты РП 150Фертильность пыльцы, % 90-9797,3 96,3-97,4Количество цветков, шт. / головку70-160150 149-152Количество соцветий, шт. / ... 2182420 Устройство для перерезания стволов деревьев ... с продольными направляющими, режущий орган выполнен в виде полотна, ограниченного параллельными боковыми сторонами, прикрепленными к продольным стержням, смонтированным с возможностью продольного перемещения в направляющих балок рамки, задней поперечной стороной, перемещаемой приводом, и передней стороной, ограниченной кромками, исходящими из зоны крепления штока силового цилиндра к полотну, расходящимися до концов продольных стержней и обращенными к перерезаемому стволу дерева, при этом кромки выполнены заостренными по всей длине с образованием продольных режущих лезвий, обращенных к перерезаемому стволу дерева, или на каждой кромке установлены режущие венцы из корончатых ... 2106082 Устройство для укладки подстилочного навоза в бурт ... жидкого навоза механическими средствами. 5. Разделение жидкого навоза с полной биологической обработкой жидкой фракции. 6. Разделение жидкого навоза с частичной биологической обработкой жидкой фракции. Для реализации этих способов обработки бесподстилочного навоза разработано несколько комплексов и видов средств механизации из них: комплексных насосных станций, несколько видов резервуаров осветительных стоков, отделителей механических включений, перемешивающие устройства, виброгрохоты, шнекопрессы, виброфильтры, горизонтальные и наклонные транспортеры, обезвоживающие бункеры-дозаторы, дуговые сита, установки для подготовки раствора химических реагентов, наконец большой ... 2121258 Устройство для вентилирования зерна или другого сыпучего материала (варианты) ... в подводящей камере лицом к рассматриваемой, первой, емкости 1). При этом газопроводы, образующие ряд, всегда имеют основной коллектор 10, соединенный в нечетном ряду 7 с подводящей камерой 3 (фиг.2 и 3), а в четном 6 - с отводящей 2 (фиг.2, 4), и обязательно - с открытыми торцами той части газопроводов этого ряда, которая смещена вправо или влево от камеры, с которой соединен этот коллектор 10. Остальные газопроводы нечетного или четного ряда, находящиеся напротив соответствующей им камеры 3 или 2, могут быть присоединены к ней непосредственно открытыми торцами. Если в ряду всего три газопровода, то в первую (смещенную) часть входит один из них, а здесь (фиг. 1-4) из четырех - два, ... |
Еще из этого раздела: 2253227 Устройство для регулирования температуры в улье 2285375 Способ обработки почвы и устройство для его осуществления 2027341 Бункер для сыпучих материалов 2298909 Устройство для сбора семян 2114107 Производные триазола, способ их получения и инсектоакарицидная композиция 2159526 Устройство для навешивания сельскохозяйственных орудий на трактор 2054429 Способ получения антисептика для защиты древесины 2388213 Способ измерения урожайности травяного покрова 2271096 Способ прогнозирования урожайности озимых зерновых культур в условиях засушливого климата 2248352 Замещенные бензоилциклогександионы, гербицидное средство на их основе, исходное соединение |