Способ автоматического управления температурно-световым режимом в теплице и система для его реализацииПатент на изобретение №: 2405308 Автор: Изаков Феликс Яковлевич (RU), Попова Светлана Александровна (RU), Супрун Мария Александровна (RU), Антонов Дмитрий Николаевич (RU), Антонов Игорь Николаевич (RU) Патентообладатель: Федеральное государственное общеобразовательное учреждение высшего профессионального образования "Челябинский государственный агроинженерный университет" (RU) Дата публикации: 10 Декабря, 2010 Начало действия патента: 3 Июня, 2009 Адрес для переписки: 454080, г.Челябинск, пр. Ленина, 75, ФГОУ ВПО "Челябинский государственный агроинженерный университет", кафедра АСХП Изобретение относится к сельскохозяйственной технике, а именно к способам и системам автоматического управления температурно-световым режимом в теплицах или других сооружениях защищенного грунта. Система автоматического управления температурно-световым режимом в теплице, осуществляющая заявленный способ, содержит контур управления температурой в теплице, включающий датчик температуры, выход которого связан с объектом регулирования через сравнивающий элемент с задатчиком, усилитель сигнала рассогласования температуры текущей и вычисленной, а также исполнительный механизм, поддерживающий в объекте вычисленную температуру, а также вычислительный блок, производящий расчеты оптимальной температуры. Также система содержит дополнительный контур управления освещенностью. Изобретение позволяет повысить точность поддержания температуры и освещенности в культивационном помещении и устойчивость работы системы, а также повысить КПД механизма фотосинтеза растений за счет согласования таких факторов среды, как температура и облученность. 2 н. и 2 з.п. ф-лы,1 ил. Изобретение относится к сельскохозяйственной технике, а именно к способам и системам автоматического управления температурно-световым режимом в теплицах или других сооружениях защищенного грунта. Известен способ автоматического управления температурным режимом в теплице [а.с. СССР Однако предложенный способ не позволяет решить актуальную задачу производства овощей в защищенном грунте, решением которой является повышение коэффициента полезного действия (КПД) механизма фотосинтеза растений. В условиях естественной облученности средние по густоте посадки используют лишь 1% приходящей энергии солнечного излучения, что значительно ниже теоретически возможного. Считается, что повысить энергетический КПД фотосинтеза растений можно, согласовав основные факторы среды с облученностью. Это тем более важно в настоящий момент времени, при современной интенсификации тепличного овощеводства, которое предполагает загущенную посадку растений на 1 м2 полезной площади (многоярусный способ выращивания), при которой на каждый квадратный метр высаживается до 10 растений, в то время как при традиционном способе посадки всего 3-4 растения. Это позволяет увеличить урожайность с 30 до 300 кг/м2 . Такая плотность посадки требует обязательного досвечивания, а это должно приводить к очень большим энергетическим затратам. Однако прибыль от большого урожая покрывает затраты на досвечивание. Хотя иногда в условиях тотального дефицита энергоресурсов бывает желательно снизить затраты как на досвечивание, так и на обогрев защищенного грунта. Известен способ оптимизации факторов среды обитания при выращивании растений [а.с. СССР Обеспечивающая реализацию этого способа система автоматической оптимизации фотосинтеза растений состоит из ассимиляционной камеры, куда помещены растения, которые облучаются регулируемым источником излучения. Показателем интенсивности фотосинтеза растений является концентрация углекислого газа (СО3), которую замеряют прибором «Инфралит-1». Используя информацию о фотосинтезе растений, судить о котором можно по скорости поглощения углекислого газа из объема ассимиляционной камеры, и на основе которой формируют целевую функцию управления с экстремумом в соответствии с принятым критерием. С помощью пускорегулирующего устройства ксеноновой лампы ДКСТВ-6000 управляют уровнем облученности растений, которую измеряют пиранометром Янушевского. Поиск максимума целевой функции осуществляет экстремальный регулятор ЭРБ-5, который впоследствии поддерживает полученное значение облученности. Система содержит вычислительный комплекс для обработки поступающей информации об интенсивности фотосинтеза и облученности растений и на ее основе вырабатывает управляющий сигнал, который поступает в экстремальный регулятор ЭРБ-5. Регулятор изменяет направление вращения электродвигателя, если система не находится в точке оптимума выбранного критерия, а двигатель через редуктор перемещает движок регулятора напряжения РНО, который медленно изменяет мощность дуговой ксеноновой лампы ДКСТВ-6000, меняя тем самым облученность растений. В данном способе оптимизации факторов среды обитания при выращивании растений и системе, обеспечивающей его реализацию, можно обнаружить ряд недостатков. Во-первых, не учтено взаимодействие двух основных факторов микроклимата - температуры и освещенности. Если при изменении освещенности одновременно не менять температуру воздуха в теплице, делая при этом ряд последовательных шагов, то регулятор так и не найдет действительный максимум интенсивности фотосинтеза. Во-вторых, экстремальное регулирование - не самый быстродействующий и экономичный способ управления режимами микроклимата, так как регулятор должен сделать несколько шагов, чтобы определить максимум, а это снижает надежность системы, постоянно находящейся в режиме автоколебаний. В-третьих, система содержит громоздкие приборы определения CO2-газообмена в ассимиляционной камере, такие приборы пригодны в научных лабораториях, где их будут обслуживать специалисты, в теплицах такие системы мало функциональны. Известен также способ управления температурным режимом в теплице [а.с. СССР Система [а.с. СССР Рассмотренный способ и система, его реализующая, имеют ряд недостатков. Во-первых, до сих пор отсутствуют математические модели урожая как конечного продукта процесса вегетации растений, а значит этот способ трудно реализуем. Во-вторых, цены на тепличную продукцию и топливо в течение срока вегетации нельзя предсказать, они постоянно меняются и сильно влияют на вычисление оптимальной по предложенному критерию температуры. В-третьих, математическая модель урожая не содержит важных показателей фитомикроклимата: длительности действия светового фактора и влажности воздуха. В-четвертых, не предусмотрена возможность изменения естественной освещенности в пользу ее увеличения в случае пасмурных дней, тем более что современные тепличные комбинаты снабжены досвечивающими установками, работа которых может быть регламентирована каким-либо критерием. Целью изобретения является повышение точности поддержания температуры и освещенности в культивационном помещении и устойчивости работы системы, а также повышение КПД механизма фотосинтеза растений за счет согласования таких факторов среды, как температура и облученность, в результате которого повышается продуктивность тепличных культур и сокращается период вегетации до начала плодоношения. Сущность изобретения состоит в следующем. В предлагаемом способе время выращивания растений в теплице разбивается на равные промежутки времени, продолжительность которых по крайней мере на порядок меньше постоянной времени самого быстродействующего возмущения. В отличие от прототипа измеряют не внешние параметры микроклимата, а в каждом из этих промежутков времени измеряются освещенность, влажность воздуха внутри теплицы, возраст растений, определяется средняя температура предыдущей ночи и продолжительность светового периода. По результатам измерений определяют одномерную оптимальную по критерию продуктивности дневную температуру, которую поддерживают постоянной в течение выбранного промежутка времени. Одномерная оптимальная температура определяется из условия равенства нулю производной от интенсивности фотосинтеза по температуре. В дополнение к этой функции должна быть вычислена одномерная оптимальная по продуктивности освещенность из условия равенства нулю производной от интенсивности фотосинтеза по освещенности. В случае, когда реальная освещенность в теплице ниже расчетной, должна быть включена аппаратура досвечивания на период установленный агротехником. Критерий продуктивности получен с использованием математической модели роста огурца сорта «Московский тепличный» [Попова С.А. Энергосберегающая система автоматического управления температурным режимом в теплице: Дис. канд. техн. наук 05.13.06. Челябинск, 1995]. В общем виде математическая модель СО3-газообмена, полученная в ходе эксперимента в камере искусственного микроклимата, записывается следующим образом: где t1 - текущее значение дневной температуры воздуха в культивационном помещении, °С; E1 - текущее значение освещенности; T2 - среднеарифметическое значение температуры предыдущей ночи, °С;
а0, a1, а2 и т.д. - коэффициенты математической модели интенсивности фотосинтеза. Для заявляемого способа и системы автоматического управления температурно-световым режимом в теплице используется критерий максимальной продуктивности, то есть приравнивают к нулю частные производные от интенсивности фотосинтеза
и определяют одномерные значения температуры и освещенности, при которых имеет место максимум интенсивности фотосинтеза, косвенного показателя продуктивности. Одномерную оптимальную дневную температуру t21 вычисляют по формуле: где a2, a 12, a22 и т.д. - коэффициенты математической модели интенсивности фотосинтеза; а 2=0,1881; а12=0,0125; а22=-0,0215; а23=0,0014; а24 =-0,0087; а25=0,0000; а26-0,0107; E1 - установившееся в результате функционирования системы и учитывающее действие солнечной радиации, текущее значение освещенности, клк; Т2 - среднеарифметическое значение температуры предыдущей ночи, °С;
Одномерную оптимальную освещенность в теплице Е21 вычисляют по формуле: где а1, а 11 и т.д. - коэффициенты математической модели интенсивности фотосинтеза; а1=1,9788; а11=-0,0141; а12 =0,0125; а13=-0,0034; а14=-0,0046; а15 =-0,0174; а16=-0,0147; t1 - установившееся в результате функционирования системы, текущее значение температуры, °С; T2 - среднеарифметическое значение температуры предыдущей ночи, °С;
В соответствии с определенными таким способом значениями температуры и освещенности изменяют уставки задатчиков. Система автоматического управления температурно-световым режимом в теплице, реализующая данный способ, содержит контур управления внутренней температурой в теплице, включающий датчик внутренней температуры, выход которого связан с объектом регулирования через элемент сравнения с задатчиком, усилитель сигнала рассогласования температуры текущей и вычисленной, а также исполнительный механизм, поддерживающий в объекте вычисленную температуру, а также вычислительный блок, производящий расчеты оптимальной температуры. В отличие от прототипа система содержит дополнительный контур управления освещенностью, состоящий из датчика освещенности, сравнивающего элемента, усилителя и исполнительного механизма и осуществляющий управление досвечивающей аппаратурой по значениям параметров освещенности определенным компьютерным задатчиком, включение и выключение осветительной аппаратуры осуществляется магнитным пускателем посредством сигнала от релейного механизма времени, задание длительности светового периода от которого также поступает на вход компьютерного задатчика, а также система снабжена датчиком влажности воздуха, счетчиком возраста растений, а вычислительный блок и задатчик объединены в компьютерный задатчик, который формирует сигналы в виде значений оптимальной температуры и оптимальной освещенности для двух контуров управления. Совокупность признаков заявляемого способа и системы для его реализации не известны и не следуют явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям «новизна» и «изобретательский уровень». На чертеже представлена схема системы автоматического управления температурно-световым режимом в теплице по критерию продуктивности. Система контура автоматической оптимизации температуры воздуха, реализующая данный способ, состоящая из датчика 5, сравнивающего элемента 1, усилителя 2, исполнительного механизма 3 и регулирующего органа 4, поддерживает вычисленную компьютерным задатчиком 12 температуру до наступления момента нового вычисления. Система контура автоматической оптимизации освещенности, состоящая из датчика 9, сравнивающего элемента 6, усилителя 7, исполнительного механизма 8, релейного механизма 10 и магнитного пускателя 11, осуществляет регулирование досвечивающей аппаратурой по значениям параметров освещенности определенным компьютерным задатчиком 12. Способ осуществляется следующим образом. Сигналы от датчиков температуры 5, освещенности 9, влажности воздуха 13 и счетчика возраста растений 14 поступают в компьютерный задатчик 12, где по формулам (3) и (4) происходит расчет оптимальных по продуктивности температуры и освещенности. Сначала определяют оптимальную дневную температуру t21 из учета заданных агротехниками начальных параметров режима работы досвечивающей аппаратуры E1 и Система, отвечающая за контур автоматической оптимизации освещенности по заявленному способу, работает следующим образом. По данным датчиков 5, 13, 14 и установленной вручную длительности фотопериода, что соответствует длительности работы досвечивающей аппаратуры, осуществляемой при помощи релейного механизма 10, компьютерный задатчик 12 вырабатывает выходной сигнал E21 по уравнению (4), являющемуся заданием для системы оптимизации освещенности. На элементе сравнения 6 происходит сравнение задания E21 с сигналом датчика освещенности 9, который учитывает еще и естественную освещенность (поступающую от солнца), значение рассогласования двух сигналов усиливается элементом 7, и затем происходит включение исполнительного механизма осветительной аппаратуры, который изменяет высоту подвески ламп, что приводит к изменению текущего значения освещенности. В свою очередь, это изменение отслеживает датчик освещенности 9. После окончания установленного техниками времени досвечивания срабатывает релейный механизм 10 и отключает магнитные пускатели досвечивающей аппаратуры 11. Так как загущенные требующие досвечивания посадки высаживают многоярусным способом, досвечивающая аппаратура опускается между растениями. Датчик освещенности по этой причине так же должен быть расположен между растениями, так как нижние ярусы посадок сильно страдают от нехватки света. Работа системы, отвечающей за канал автоматической оптимизации температуры, осуществляется следующим образом. Компьютерный задатчик по данным датчиков 13 и 14, значениям предварительного светового режима Е1 и Совместное использование способа и системы значительно повышает эффективность использования световой энергии солнца и облучательной установки культивируемыми растениями, а значит, позволяет сократить длительность периода вегетации до начала плодоношения, увеличить продуктивность самих растений, а также повысить товарные качества плодов и содержание в них сахаров и витаминов. Формула изобретения1. Способ автоматического управления температурно-световым режимом в теплице, включающий разбиение вегетационного периода растений в теплице на равные промежутки времени, продолжительность которых на порядок меньше постоянной времени самого быстродействующего возмущения, вычисление для каждого промежутка времени оптимальной температуры и поддержание этой оптимальной температуры постоянной в течение всего промежутка времени, отличающийся тем, что измеряют влажность воздуха, температуру воздуха и освещенность в теплице с получением сигналов от датчиков воздуха, температуры и освещенности соответственно, измеряют возраст растений с получением сигнала от счетчика возраста растений, определяют продолжительность светового периода, при этом данные поступают в компьютерный задатчик, который вычисляет среднее значение ночной температуры, затем определяет одномерную оптимальную по критерию продуктивности дневную температуру воздуха и далее определяет одномерную оптимальную по продуктивности освещенность, после чего в соответствии с определенными значениями температуры и освещенности изменяют уставки задатчиков. 2. Способ по п.1, отличающийся тем, что устанавливают одномерную оптимальную по продуктивности температуру воздуха в теплице для дневного времени суток по формуле: 3. Способ по п.1, отличающийся тем, что устанавливают одномерную оптимальную по продуктивности освещенность по формуле: 4. Система автоматического управления температурно-световым режимом в теплице, содержащая контур управления температурой в теплице, включающий датчик температуры, выход которого связан с объектом регулирования через сравнивающий элемент с задатчиком, усилитель сигнала рассогласования температуры текущей и вычисленной, а также исполнительный механизм, поддерживающий в объекте вычисленную температуру, а также вычислительный блок, производящий расчеты оптимальной температуры, отличающаяся тем, что система содержит дополнительный контур управления освещенностью, состоящий из датчика освещенности, сравнивающего элемента, усилителя и исполнительного механизма и осуществляющий управление досвечивающей аппаратурой по значениям параметров освещенности определенным компьютерным задатчиком, включение и выключение осветительной аппаратуры осуществляется магнитным пускателем посредством сигнала от релейного механизма времени, задание длительности светового периода от которого также поступает на вход компьютерного задатчика, а также система снабжена датчиком влажности воздуха, счетчиком возраста растений, а вычислительный блок и задатчик объединены в компьютерный задатчик, который формирует сигналы в виде значений оптимальной температуры и оптимальной освещенности для двух контуров управления. MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 04.06.2011 Дата публикации: 27.03.2012 Популярные патенты: 2230467 Добавка к пищевым продуктам, биоцидный препарат, 2-(1-окси- 4-гидроксифенилен)-бензохинон (варианты) и способ его получения ... не наблюдалось. В головном мозге наблюдались субдуральные и периваскулярные кровоизлияния.Результаты измерения массы тела животных, переживших интоксикацию в дозах, вызывающих летальные эффекты, показывают некоторое снижение средней массы тела у всех животных, получавших субстанцию на второй день после введения. В последующие дни динамика массы тела опытных животных во всех группах не отличалась от контроля.Анализ величин массовых коэффициентов внутренних органов не выявил каких-либо достоверных отличий как между группами животных, получавших субстанцию, и контрольной группой.Результаты токсикометрии, данные наблюдений за экспериментальными животными на протяжении 14 дней после ... 2271096 Способ прогнозирования урожайности озимых зерновых культур в условиях засушливого климата ... способ возделывания озимой пшеницы, включающий расчет нормы удобрений на запланированный урожай и дискретное внесение их в течение вегетации, в котором с целью повышения урожайности и эффективности удобрений их вносят с поливной водой дифференцированными дозами в зависимости от потребления питательных веществ в конкретную фазу роста и развития озимой пшеницы: в фазу кущения - 19-21% азота от общей нормы азотных удобрений, 24-26% фосфора и 25-27% калия, в фазу трубкования - 41-45% азота, 44-48% фосфора и 51-57% калия, в фазу колошения и формирования зерновки - 21-23% азота, 28-31% фосфора и 19-21% калия, а в фазу молочной спелости вносят лишь азот в количестве 14-16% от общей нормы ... 2114107 Производные триазола, способ их получения и инсектоакарицидная композиция ... их физиологические свойства. Обнаружено, что новые производные триазола общей формулы (I), приведенной ниже, обладают отличным действием против широкого круга вредных насекомых на фермах и в садах, особенно против чешуекрылых вредных насекомых, клещей и тли, а также оказывают очень сильное действие на яйца и личинки клещей и личинки тли, обладающих устойчивостью к традиционным химическим средствам. Согласно изобретению предлагаются производные триазола общей формулы (I). где R1 является алкилом, X является атомом водорода, атомом галоида, алкилом, алкокси, алкилтио, нитрогруппой, цианогруппой, или трифторметилом, n является целым числом 1-5, при условии, что когда n равно 2 ... 2050341 Устройство для переработки органического субстрата в биогумус ... Питательную среду при помощи самосвального устройства сбрасывают на площадку. Питательная среда из разных компонентов органического субстрата смешивается в однородную массу при помощи грейфера, тележки 27 и подъемного механизма и загружается в межстенное пространство стен 2 и 8. При загрузке органического субстрата и выгрузке биогумуса ходовая тележка обеспечивает перемещение погрузчика-перегружателя 25 над устройствами, где формируются курганы. Приводные колеса (на чертеже не показано) приводятся в работу от электрического двигателя. По концам направляющих 24 установлены упоры, путевые выключатели и рельсовые противоугонные захваты (на чертеже не показано). Подъемник производит ... 2215407 Способ создания исходного материала для селекции растений ... поколении отбирают рекомбинированные полиплоидные формы, явно отличающиеся от базового полиплоидного морфотипа (по любым количественным и качественным признакам), что свидетельствует о структурных изменениях хромосом одного или более составляющих полиплоид диплоидных геномов. Выделенные рекомбинированные полиплоидные формы выращивают в течение нескольких поколений отдельными популяциями, выделяя в каждом поколении реплоиды с возвратно кратнопониженной плоидностью по морфологическим признакам и прямым подсчетом хромосом. Оценивают реплоиды по комплексу хозяйственно ценных признаков, выделяя формы, отличающиеся от растений с исходной плоидностью измененными или новыми качественными и ... |
Еще из этого раздела: 2296457 Устройство для магнитно-импульсной обработки растений 2265444 Способ консервирования пантов 2460269 Малогабаритный картофелеуборочный комбайн 2272840 Способ молекулярного маркирования пола хмеля обыкновенного (humulus lupulus l) 2403703 Способ интенсификации роста растений 2288561 Устройство для предпосевной обработки семян растений 2069949 Устройство для направленной передачи наследственной информации 2111642 Высевающий аппарат 2073513 Способ профилактики технологических стрессов молодняка крупного рогатого скота 2027346 Лесозаготовительная машина |