Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Биологически активное соединение, обладающее поверхностно-активными свойствами

 
Международная патентная классификация:       A01N

Патент на изобретение №:      2482676

Автор:      Валитов Раиль Бакирович (RU), Валитов Рафик Раильевич (RU)

Патентообладатель:      Валитов Раиль Бакирович (RU)

Дата публикации:      27 Мая, 2013

Начало действия патента:      21 Ноября, 2011

Адрес для переписки:      450068, Республика Башкортостан, г.Уфа, а/я 84, Т.И. Радченко

Изобретение относится к сельскому хозяйству. Химическое соединение является продуктом взаимодействия обладающих биологической активностью соединений, выбранных из группы (а), и соединений, выбранных из группы (b). Взаимодействуют между собой соединения групп (а) и (b), которые характеризуются противоположными - протонодонорной (с) и протоноакцепторной (d) способностями. Группа (а) включает: арилоксикарбоновые кислоты, ароматические карбоновые кислоты с различными заместителями - галоген; NH2, OCH 3; пиридинкарбоновые кислоты с различными заместителями - галоген NH2; фосфоновые кислоты, содержащие функционально-активную карбоксильную группу (-СООН) (с); азолсодержащие структуры с различными заместителями, содержащие триазольный реакционный центр (d)

;

циклогексендионсодержащие структуры, содержащие общий сопряженный кетоно-енольный фрагмент (с)

;

замещенные сульфонилмочевины, содержащие

мочевинный фрагмент .

Группа (b) включает: третичные алкиламины, содержащие по меньшей мере одну алкильную группу с числом атомов углерода не менее 8 (d); оксиэтилированные алкиламины с числом оксиэтилированных групп -О-СН2-СН2- не менее 4 (d); линейные алкилсульфоновые кислоты R-SO3 H, где R содержит не менее 8 атомов углерода (с); алкилбензолсульфоновые кислоты R-C6H4SO3H, где R содержит не менее 8 атомов углерода (с). Соединение характеризуется способностью образовывать водные мицеллярные растворы. Критическая концентрация мицеллообразования составляет 0,05-020 мас.%. Изобретение позволяет повысить пестицидную активность соединения. 3 з.п. ф-лы, 5 табл.

Данное изобретение относится к химии поверхностно-активных соединений и может быть реализовано в производстве пестицидных препаратов, используемых в сельскохозяйственной практике в борьбе с вредителями и сорными растениями в посевах производственных культур.

Анализ ассортимента пестицидных препаратов (Справочник пестицидов и агрохимикатов, разрешенных к применению на территории РФ. М.: Агрорус, 2011) показывает практическое отсутствие в нем пестицидных препаратов, позволяющих кроме традиционно известных состояний действующих веществ пестицидов в водных растворах рабочих жидкостей в виде эмульсий, суспензий, молекулярно растворимых солей, достигать физического состояния действующего вещества (далее - д.в.) пестицида в рабочей жидкости в форме мицелл либо микроэмульсий.

Известны обладающие поверхностно-активными свойствами триалкиламинные соли арилоксикарбоновых кислот, дикамбы, клопиралида, содержащие алкильный радикал с числом атомов углерода не менее восьми (RU 2408188, опубл. 10.01.2011), которые включены в гербицидную композицию в качестве ПАВ. Они обеспечивают создание рабочей жидкости в виде макроэмульсии с размером капель 1-3 мкм.

Из патентного документа RU 2394426, опубл. 20.07.2010, известны триалкиламинные соли дикамбы и сульфонилмочевины, содержащие два алкильных радикала с числом атомов углерода от 1 до 3 и один алкильный радикал с числом атомов углерода не менее 9, которые проявляют поверхностно-активные свойства.

Известен гербицидный состав, содержащий в многокомпонентном составе в том числе сульфонилмочевину и третичный алкиламин, содержащий суммарно не более 20 атомов углерода в молекуле, причем один из радикалов содержит не менее 8 атомов углерода, при приготовлении рабочей жидкости образуется триалкиламинная соль сульфонилмочевины (RU 2400068, опубл. 27.09.2010).

Наиболее близкой по структуре к одной из заявленной структур биологически активного соединения является триалкиламинная соль глифосата, в которой алкильные группы имеют нормальное или изостроение и содержат от 1 до 20 атомов углерода, причем указанные соли имеют поверхностное натяжение в интервале значений 30,5-34,5 мН/м (RU 2356229, опубл. 27.05.2009). Известное соединение характеризуется гербицидной активностью и поверхностно-активными свойствами.

Однако известные соединения не обеспечивают получение рабочей жидкости с размерами частиц в нанометровом диапазоне.

Задачей настоящего изобретения является создание бифункциональных химических соединений, сочетающих поверхностно-активные свойства и биологическую активность, а именно высокую пестицидную активность.

Высокая пестицидная активность обусловлена новыми свойствами синтезированных соединений, позволяющими достичь состояния д.в. пестицидов в рабочей жидкости в форме мицелл либо микроэмульеий в отличие от традиционных макроэмульсий.

Предлагаемое техническое решение основано на ряде фундаментальных понятий коллоидной химии:

- водные мицеллярные растворы могут образовывать только вещества, обладающие поверхностно-активными свойствами, которые при некоторой концентрации - критической концентрации мицеллообразования (ККМ) в растворе начинают образовываться агрегаты молекул - мицеллы, вследствие чего общая растворимость ПАВ резко увеличивается. Однако не все поверхностно-активные вещества способны образовывать мицеллы (С.С.Воюцкий. Курс коллоидной химии. М.: Химия, 1976, с.400). Факт мицеллообразования дифильных структур требует экспериментального подтверждения;

- образование микроэмульсий есть результат солюбилизации мицеллами водонерастворимых компонентов (обычно органического: растворителя) препаративной формы пестицидов. При этом микроэмульсия не есть обычная эмульсия с очень мелкими каплями. Наоборот, она имеет много общего с мицеллярными системами и принципиально отличается от классической эмульсии (А.И.Русанов. Мицеллообразование в растворах поверхностно-активных веществ. С-Пб: Химия, 1992).

Исходя из сказанного, основополагающим положением настоящего изобретения является синтез новых бифункциональных биологически активных соединений, обладающих поверхностно-активными свойствами, способными к мицеллообразованию в водных средах и образованию микроэмульсий. Это тем более важно с практической точки зрения, поскольку уникальная роль мицеллярных и микроэмульсионных образований в жизненно-важных процессах биологических систем общеизвестна.

Пути синтеза поверхностно-активных соединений хорошо известны. Конечная структура должна обладать дифильными свойствами, т.е. состоять из двух фрагментов, один из которых растворим в жидкости (лиофильная часть), другой должен иметь противоположные свойства - нерастворим в жидкости (лиофобная часть). При этом в соответствии с задачами настоящего изобретения обязательным является присутствие в структуре синтезированного соединения в качестве одного из фрагментов биологически активного начала. В качестве биологически активной части в рамках настоящего изобретения предложены биологически активные д. в. пестицидов. В качестве второго фрагмента использованы полупродукты производства поверхностно-активных соединений.

При создании изобретения было установлено, что химические соединения, полученные как продукт взаимодействия обладающих пестицидной активностью соединений, выбранных из группы (а), и соединений, выбранных из группы (b), обладают поверхностно-активными свойствами. Причем взаимодействуют между собой соединения групп (а) и (b), которые характеризуются противоположными - протонодонорной (с) и протоноакцепторной (d) способностями.

При этом группа (а) включает

- арилоксикарбоновые кислоты: фенокси-, крезоксикарбоновые кислоты - уксусная, пропионовая, масляная и др.; ароматические карбоновые кислоты: бензойные кислоты с заместителями - галоген, NH2, OCH3; пиридинкарбоновые кислоты с заместителями - галоген, NH2; фосфоновые кислоты: глифосат, содержащие функционально-активную карбоксильную группу (-СООН), которые характеризуются протонодонорной способностью (с);

- азолсодержащие структуры с различными заместителями, содержащие триазольный реакционный центр с различными заместителями (тебуконазол, пропиконазол, ипконазол, диниконазол и т.д.), характеризующиеся протоноакцепторной способностью (d)

,

- циклогексендионсодержащие структуры (клетодим, бутроксидим, мезотрион и т.д.), содержащие общий сопряженный кетоно-енольный фрагмент, придающий структуре действующего вещества пестицида протонодонорную способность (с)

,

- замещенные сульфонилмочевины, содержащие мочевинный фрагмент (хлорсульфурон, никосульфурон, примисульфурон и др.), придающий структуре протонодонорную способность (с),

а группа (b) включает

- третичные алкиламины, содержащие по меньшей мере одну алкильную группу с числом атомов углерода не менее 8, обладающие протоноакцепторной способностью (d);

- оксиэтилированные алкиламины с числом оксиэтилированных групп -О-СН2-СН2- не менее 4, обладающие протоноакцепторной способностью (d);

- линейные алкилсульфоновые кислоты R-SO3H, где R содержит не менее 8 атомов углерода, обладающие протонодонорной способностью (с);

- алкилбензолсульфоновые кислоты R-С 6Н4 SO3H, где R содержит не менее 8 атомов углерода, обладающие протонодонорной способностью (с).

Полученные соединения характеризуются способностью образовывать водные мицеллярные растворы, при этом критическая концентрация мицеллообразования составляет 0,05-0,20 мас.%. Они также характеризуются поверхностным натяжением 0,5% водного раствора на границе с воздухом в интервале значений 28-35 мН/м.

Новые биологически активные соединения способны образовывать в водных растворах смешанные мицеллы и микроэмульсии в присутствии органического растворителя.

Биологически активные соединения характеризуются высокой пестицидной активностью: гербицидной или фунгицидной.

Синтез химических соединений, приводящих к образованию биологически активных структур с поверхностно-активными свойствами, осуществляли путем эффективного контакта д.в. пестицида, обладающего протонодонорными свойствами, с противоположным по свойствам (протоноакцепторные) полупродуктом синтеза поверхностно-активных соединений и наоборот.

В качестве примера можно привести пары:

Таблица 1 образцаДействующее вещество пестицида Полупродукт производства ПАВ 12-метокси-3,6-дихлорбензойная кислота (дикамба) Диметилалкил (C8-С12)амин 2 3,6-дихлорпиридинкарбоновая кислота Диметилалкил (С10-С14)амин 3 2,4-дихлорфеноксиуксусная кислота (2,4-Д) Оксиэтилированный спирт (С12) 4Карфентразол-этил Линейная алкилбензолсульфоновая кислота 5Клетодим Диметилалкил (C8-С12)амин 6 ГлифосатДиметилалкил (С10-С14)амин 7Тебуконазол Линейная алкилсульфоновая кислота

Сам синтез может быть осуществлен всеми известными способами: химическими и механохимическими.

Например, синтез диметилалкил (С10-С14) аминной соли 2-метокси-3,6-дихлорбензойной кислоты осуществляют в реакторе с перемешивающимустройством при 40°С, поскольку образующееся биологически активное соединение с поверхностно-активными свойствами является жидким.

В то же самое время реакция сульфонилмочевин с диметилалкид (С 10-С14)амином осуществляется механохимическим методом в планетарной мельнице, поскольку продукт реакции - порошок.

Строение синтезированных соединений подтверждено спектрами ЯМР 1Н.

Так, факт образования солеобразной структуры клетодима с диметилалкил (С10 -С14) амином подтверждается смещением в D2 O сигнала протонов группы CH2N(СН3) 2 в область слабого поля (2,62-2,66 м.д.) и появлением сигнала протонов группы (NOCH2) в виде дуплета при 4,08 м.д., что подтверждает протонирование диметилалкил (С 10-С14)амина.

В случае взаимодействия карфентразол-этила с линейной алкилбензолсульфокислотой структура полученного соединения подтверждается появлением сигнала при 9.00 м.д. в виде уширенного синглета, который относится к группе NH+ триазольного кольца.

Аналогичным образом доказаны структуры всех синтезированных соединений.

Размеры дисперсной фазы прозрачных мицеллярных растворов оценивали на спектрометре динамического и статистического рассеяния света «Photocor Complex», предназначенного для определения размера частиц в нанометровом диапазоне.

Изложенное выше иллюстрируется следующими примерами. Так, в табл.2 представлены структуры химических соединений, синтезированных на базе известных д. в. пестицидов и полупродуктов синтеза поверхностно-активных веществ, оценка их поверхностно-активных свойств и характеристика состояния водного раствора.

Таблица 2 Поверхностно-активные свойства синтезированных соединений п/пНаименование соединенияПоверхностное натяжение 0,5% водного раствора на границе с воздухом, мН/м Критическая концентрация мицеллообразования, мас.% Размер дисперсной фазы водного раствора в области ККМ, нм (мицеллы) 1 23 45 1 Дибутилалкил (C8-С12) аминная соль 2-метокси-3,6-дихлорбензойной кислоты (дикамбы) 29,40,09-0,11 12,8 2Диметилалкил (С 10-С14) аминная соль 3,6-дихлор-пиридинкарбоновой кислоты (клопиралида) 30,50,08-0,1 28,3 3Диметилалкил (С 8-С12) аминная соль 2,4-дихлорфеноксиуксусной кислоты29,4 0,1-0,12 15,84 Карфентразол-этильная соль линейной алкилбен-золсульфокислоты 32,10,12-0,14 190,1

12 34 55 Диметилалкил (C8 -С12) аминная соль клетодима 32,40,1-0,12 163,1 6Дибутилалкил (С 10-С14) аминная соль N-фосфонометилглицина (глифосата) 30,8 0,1-0,12110,3 7 Тебуконазольная соль линейной алкилсульфоновой кислоты 34,50,05-0,07 31,8 8Дибутилалкил (С 8-C12) аминная соль никосульфурона 31,10,15-0,2 241,4 9Диметилалкил (С 8-С12) аминная соль флорасулама 38,10,02 - 0,024 89 10Оксиэтилированная (-ОСН2-СН2-) 4-6 аминная соль 2,4-Д кислоты 29,6 0,1-0,1430,8 11 Оксиэтилированная; (-ОСН2-СН2-) 6-10, аминная соль флорасулама 34,80,05 - 0,06 62,1 12Оксиэтилированная (-ОСН2-СН2-) 4-6 аминная соль клетодима 31,4 0,15-0,17140,8 13 Оксиэтилированная (-ОСН2-СН2-) 6-10 аминная соль глифосата30,8 0,11-0,13 108,414 Оксиэтилированная (-ОСН 2-СН2-) 4-6 аминная соль никосульфурона 29,9 0,15-0,19231,3 15 Оксиэтилированная (-ОСН2-СН2-) 4-6 аминная соль дикамбы27,9 0,07-0,09 15,816 Оксиэтилированная (-ОСН 2-СН2-) 4-6 аминная соль клопиралида 30,50,09-0,1 31,8

Проблема технической реализации изобретения требует дополнительного решения, поскольку технические характеристики препаративной формы зависят не только от свойств д.в. пестицидов, но и от других присутствующих в ней компонентов (в частности, органического растворителя), которые ответственны за такие характеристики препаративной формы, как текучесть, вязкость, морозостойкость и т.д.

В этой связи трансформация смешанных мицелл за счет солюбилизации мицеллами нерастворимых в воде компонентов (в частности, растворителя) препаративной формы в микроэмульсии с получением оптически прозрачных рабочих растворов является принципиально важным моментом для технической реализации изобретения [А.И.Русанов. Мицеллообразование в растворах поверхностно-активных веществ, С-Пб: Химия, 1992, с.251-263].

Здесь необходимо отметить, что микроэмульсии нельзя рассматривать как обычные классические эмульсии с каплями очень маленького размера. Различие заключается, прежде всего, в том, что классические микроэмульсии являются термодинамически нестабильными системами с размером капель дисперсной фазы в пределах 1 -10 микрон и более, тогда как микроэмульсии представляют собой прозрачные термодинамические устойчивые системы с размером дисперсной фазы в нанометровом диапазоне [К.Холмберг и др. Поверхностно-активные вещества и полимеры в водных растворах, М., Бином, 2009, с.143].

Факт возможности образования микроэмульсий путем солюбилизации смешанными мицеллами органического растворителя (ароматизированный сольвент) с образованием оптически прозрачных водных растворов установлен нами экспериментально (табл.3).

При этом следует обратить внимание на следующий факт, что если мицеллярные водные растворы образуются как из индивидуальных поверхностно-активных веществ, так и из смеси поверхностно-активных соединений (смешанные мицеллы), то микроэмульсии образуются в основном в смеси поверхностно-активных соединений как результат солюбилизации смешанными мицеллами органического растворителя, обычно используемого при приготовлении пестицидных препаратов в форме концентратов эмульсии (К.Холберг. Поверхностно-активные вещества и полимеры в водных растворах. М.: Бином, 2009). Для этих целей в образцы 1-14 были дополнительно введены поверхностно-активный оксиэтилированный алкилфенол (неонол) и ароматизированный растворитель (сольвент).

Таблица 3. образцаСостав образца, мас.%Физическое состояние 0,3% водного раствора Размер дисперсной фазы 0,3 мас.% водного раствора (микроэмульсия), нм1 2 34 1 Поверхностно-активная структура дикамбы - 0,5 прозрачный неонол - 0,45 сольвент - 0,1 21,8 вода - 98,95 Поверхностно-активная структура клопиралида - 0,5 прозрачный неонол - 0,6 2сольвент - 0,12 40,6 вода - 98,78 Поверхностно-активная структура 2,4-Д кислоты - 0,5 прозрачный неонол - 0,3 3сольвент - 0,3 20,8 растворитель - 98,9 Поверхностно-активная структура карфентразол-этила - 0,5 прозрачный 4неонол - 0,75 195,8 растворитель - 0,4 вода - 98,35 Поверхностно-активная структура клетодима - 0,5 прозрачный 5неонол - 0,55 189,8 растворитель - 0,3 вода - 98,65 Поверхностно-активная соль глифосата - 1,0 6неонол - 0,5 прозрачный 130,5 растворитель, - 0,6 вода - 97,9 Поверхностно-активная структура тебуконазола - 1,05 прозрачный 7неонол -0,61 48,5 растворитель - 1,0 вода - 97,31 Поверхностно-активная ДМАА соль никосульфурона - 0,5 8неонол - 0,3 прозрачный 201 растворитель - 0,2 вода - 99,0 Поверхностно-активная ДМАА соль флорасулама - 0,5 9неонол - 0,4 прозрачный 85,5 растворитель - 0,3 вода - 98,8 Поверхностно-активная оксиэтилированная аминная соль клетодима - 0,5 12неонол - 0,3 прозрачный 105,4 растворитель - 0,2 вода - 99 Поверхностно-активная оксиэтилированная аминная соль никосульфурона - 0,5 14неонол - 0,4 прозрачный 156,1 растворитель -0,1 вода - 99

Как следует из приведенных данных, солюбилизационная емкость смешанных мицелл по отношению к растворителю достаточно высокая, что является важным при формуляции пестицидных препаратов с необходимыми техническими характеристиками.

Размеры дисперсной фазы прозрачных мицеллярных и микроэмульсионных растворов оценивали на спектрометре динамического и статистического рассеяния света «Photocor Complex», предназначенным для определения размера дисперсной фазы в нанометровом диапазоне.

Биологическая эффективность экспериментальных образцов на основе синтезированных поверхностно-активных структур сравнивалась с промышленными образцами тех же действующих веществ. При этом д.в. пестицидов промышленных образцов присутствовали в рабочей жидкости в общепринятых традиционных физических состояниях (классическая эмульсия типа «масло в воде», суспензия, суспоэмульсия) (табл.4).

В отличие от промышленных образцов, рабочая жидкость которых представляет собой водный раствор молочного цвета, рабочие жидкости экспериментальных образцов представляют собой прозрачные микроэмульсионные растворы.

Биологическая эффективность синтезированных соединений оценивалась в вегетационных опытах на тест-растениях в сравнении с промышленными образцами препаратов. При этом норма расхода действующего вещества (г/га) для сравниваемых образцов оставалась одинаковой. Эффективность воздействия на объект обработки д. в. пестицидов в разных физических состояниях (традиционное состояние, поверхностно-активное состояние) оценивали по скорости действия на тест-растения, в связи с чем продолжительность опыта ограничивалась 3-мя днями. Результаты биологических испытаний представлены в табл.4.

Таблица 4 Сравниваемые образцы Норма расхода д.в., г/га Состояние рабочей жидкости Тест-растение% ингибирования 12 34 5 Октапон экстра, КЭ (500 г/л 2,4-Д) -промышленный образец [обычный эфир (C8) 2,4-Д кислоты] д.в. пестицида (2,4-Д - гербицид) 250мутная 30,8 Образец на основе поверхностно-активной ДМАА соли 2,4-Д, КЭ, состав, г/л 250прозрачная горох 51,1360 г/л 2,4-Д кислоты 290 г/л неонола АФ 9-12 72 г/л растворителя (сольвент) Аврорекс, КЭ д.в. пестицида (карфентразол-этил - гербицид) (500 г/л 2,4-Д в виде 2-этилгексилового эфира + 21 г/л карфентразол-этила) - промышленный образец 200±8мутная горох 40,8Образец на основе поверхностно-активных ДМАА солей 2,4-Д и карфентразол-этила, 200±8прозрачная 71,8 состав, г/л 340 г/л 2,4-Д кислоты 270 г/л неонола АФ9-12 17 г/л карфентразол-этила 100 г/л растворителя (сольвент) Селектор, КЭ (240 г/л клетодима в обычной форме) промышленный образец. д.в. пестицида (клетодим - гербицид) 100мутная 53,1 Образец на базе поверхностно-активной ДМАА соли клетодима, овес КЭ, состав, г/л 100прозрачная 70,2 250 г/л клетодима 340 г/л неонола, АФ 9-12 150 г/л растворителя (сольвент) Роксил, КС (60 г/л тебуконазола в обычной форме) - промышленный образец. д.в. пестицида (тебуконазол - фунгицид, протравитель) 6 г/т зерна протравливание зерна против корневых гнилей 49 15 г/т зернамутная 69 30 г/т зерна 100 Образец на базе поверхностно-активной модификации 6 г/т зерна 84 тебуконазола с линейной 15 г/т зернапрозрачная 100 алкилбензолсульфоновой 30 г/т зерна 100 кислотой, КЭ, состав, г/л 205 г/л тебуконазола 410 г/л неонола АФ 9-12 240 г/л растворителя (сольвент) Милагро, КС (40 г/л д.в. пестицида (никосульфурон - гербицид) никосульфурона) - промышленный образец. Образец на основе поверхностно-активных ДМАА солей 20 суспензия молочного цвета овес43,1 никосульфурона, КЭ, состав, г/л20 прозрачная 81,4 375 г/л никосульфурона 266 г/л неонола АФ 9-12 130 г/л растворителя (сольвент) Прима, СЭ д.в. пестицида (флорасулам - гербицид) (300 г/л флорасулама) - промышленный образец. 150/3,1 мутная Образец на базе поверхностно-активных ДМАА солей 2,4-Д и флорасулама, КЭ, состав, г/л горох 53,4 150/3,2 прозрачная 91,8 300 г/л 2,4-Д кислоты 12,5 г/л флорасулама 325 г/л неонола АФ 9-12 91 г/л растворителя (сольвент)

Вследствие особенностей гербицидного действия глифосата (общеистребительный) оценка его биологической эффективности была осуществлена в полевых условиях. Сравнивали препараты, содержащие д.в. глифосата в рабочей жидкости в молекулярноравновесном состоянии (промышленный образец) и в состоянии мицелл и микроэмульсий (образцы согласно изобретению). Эти данные представлены в табл.5.

Таблица 5 Препарат Состояние д.в. глифосата в рабочей жидкости Норма расхода д.в., г/га % ингибирования доминирующих сорняков ОсотыВьюнок полевой Мать-и-мачеха Пырей ползучийПикульник 1 23 45 67 8Раундап, ВР 360 г/л глифосата (промышленный образец) Молекулярно-растворенное 50047,1 49,555,6 39,742,8 Поверхностно-активная соль глифосата, 360 г/л мицеллярное500 83,2 79,483,5 68,974,5 Поверхностно-активная соль глифосата, 360 г/л микроэмульсионное 500100 100100 100100

Как следует из приведенных данных максимальной биологической эффективностью обладает образец, где д.в. глифосата находится в рабочей жидкости в состоянии микроэмульсии. Обнаруженный факт большей эффективности микроэмульсий нашел свое подтверждение и для других синтезируемых структур. В частности, результаты полевых испытаний поверхностно-активной соли клопиралида с разным состоянием д.в. клопиралида в рабочей жидкости в сравнении с промышленным образцом (препарат Лонтрел, ВР, 300 г/л клопиралида) показали, что биологическая эффективность поверхностно-активной соли клопиралида в состоянии микроэмульсии в рабочем растворе в 1,9 раза выше, чем у промышленного образца в молекулярнорастворенном состоянии и в 1,3 раза выше, чем у мицеллярных. Это можно объяснить, учитывая факт более организованных структур микроэмульсий в сравнении с мицеллами.

Как и следовало предполагать, учитывая исключительную роль мицеллярных и микроэмульсионных состояний биологически активных соединений (повышение проницаемости, биодоступности и т.д.) в жизнедеятельности биосистем, биологическая эффективность д.в. пестицидов зависит от физического состояния действующего вещества в рабочей жидкости.

Новые синтезированные структуры поверхностно-активных д. в. пестицидов, обладающие бифункциональными свойствами (поверхностная и биологическая активности) и способные образовывать в водных растворах рабочих жидкостей смешанные мицеллы и микроэмульсий действующих веществ, оказались практически в 1,5-2 раза более эффективными по отношению к вредным организмам (сорные растения и микроорганизмы, вызывающие болезни растений), чем их традиционные аналоги (гербицидная и фунгицидная активность).

Таким образом, следует подчеркнуть, что суть изобретения не только синтез новых поверхностно-активных структур, обладающих биологической активностью, но и обязательное наличие у них таких важных свойств, как способность в водных средах образовывать мицеллярные растворы смешанных мицелл и микроэмульсий, что обеспечивает их высокую гербицидную и фунгицидную активность в борьбе с сорными растениями и болезнями в посевах культурных растений. Последнее является достаточно принципиальным условием, поскольку данные свойства синтезированных бифункциональных структур позволяют эффективно решить проблему технической реализации изобретения.

Отсутствие в описании изобретения других действующих веществ, содержащих один и тот же реакционный центр, но имеющих отличные от приведенных примеров заместители и тем не менее включенных в формулу изобретения обосновывается следующими соображениями.

Согласно общим положениям теоретической органической химии, группа органических соединений, имеющих один и тот же реакционный центр, но разные заместители при взаимодействии с одним из представителей другой группы органических соединений (например, спирты, амины и т.д.), образует продукты реакции, относящиеся к одному классу соединений.

Так, группа аминных соединений, имеющих один и тот же реакционный центр в виде атома азота, способного принимать на себя кислый протон, при взаимодействии с карбоксилсодержащим органическим соединением, будет всегда образовывать один класс соединений - аминные соли, которые могут отличаться только по некоторым физико-химическим характеристикам, связанным с влиянием заместителей при атоме азота органического амина.

Действительно, расчет липофильности различных аминных солей 2,4-дихлорфеноксиуксусной кислоты, оцененный путем расчета коэффициента распределения в системе «октанол-вода» показывает, что структура амина существенно влияет на липофильность 2,4-Д кислоты и поверхностные свойства ее аминных солей.

Расчетные значения log P аминных солей 2,4-Д кислоты

СольМоноэтанол-аминная Диметил-аминная Тетраметилен-диаминная Диметилалкил-(C 8-С12) аминная log P1,97 2,564,24 7,51

Если рассматривать обратную ситуацию, то те же самые расчеты показывают, что липофильность продукта взаимодействия 2-метокси-4-хлоркрезокси-уксусной кислоты (д. в. гербицида 2М-4Х) с диметилалкил (С8-С12 ) амином (log Р -7,49) оказалась практически идентичной липофильности диметилалкил (С8-С12) аминной соли 2,4-Д кислоты (7,51).

Эти данные однозначно свидетельствуют о том, что и для 2,4-Д кислоты, и для 2М-4Х поверхностные свойства определяются только структурой соответствующего амина.

Незначительное изменение кислотности реакционного центра (2,4-Д кислота рКа - 2,64, 2М4Х рКа - 2,85) практически не влияет на скорость взаимодействия кислот и амина.

Приведенные данные позволяют считать, что не следует ожидать каких-либо изменений поверхностных и биологических свойств диметилалкил (C8 -С12) аминных и оксиэтилированных алкиламинных солей 2М-4Х в сравнении с 2,4-Д кислотой, тем более, что гербицидный спектр действия обоих действующих веществ практически идентичен.

Аналогичный подход при рассмотрении д. в. гербицидов, относящихся к классу циклогексендионов, содержащих кетоно-енольный реакционный центр (рассмотренный пример с «клетодимом», известные д.в. гербицидов этого класса «бутроксидим», «тепралоксидим», «мезатрион») показывает, что кислотность реакционного центра для этой группы соединений незначительно отличается друг от друга (рКа находится в интервале 4,36-4,8), что практически не может сказаться на скорости взаимодействия этих соединений с третичными и оксиэтилированными алкиламинами с получением соответствующих алкиламинных солей.

Как и для диметилалкиламинной соли клетодима бифункциональные свойства других аминных солей представителей этого класса гербицидов так же, как у «клетодима» будут определяться - биологическая активность структурой д.в. пестицида, а поверхностно-активные свойства структурой третичного или оксиэтилированного алкиламина.

Что касается конкретных препаративных форм на базе поверхностно-активных модификаций д. в. пестицидов, то их выбор будет определяться их физико-химическими характеристиками, которые приведены в табл.5.

Таблица 5 Физико-химические характеристики поверхностно-активных модификаций д.в. пестицидов образца Физическое состояние Растворимость, г/100 г ВодаАроматизированный растворитель 12 34 1 подвижная жидкость 60неограниченная 2 подвижная жидкость 6080 3 подвижная жидкость ~1неограниченная 4 гомогенная вязкая масса 0,1-0,1335 5 гомогенная вязкая масса <158 6 порошок33 <0,1

Как следует из данных табл.5, образцы 1-5 пригодны к формуляции препаратов в форме концентратов эмульсий, тогда как образец 6 предпочтительно формулировать как водорастворимый порошок.

Данное изобретение не исчерпывается приведенными соединениями и может быть воплощено в других биологически активных соединениях, основываясь на установленной нами способности к модификации действующих веществ пестицидов с приобретением ими поверхностно-активных свойств.

Формула изобретения

1. Химическое соединение, обладающее поверхностно-активными свойствами и гербицидной или фунгицидной активностью, как продукт взаимодействия обладающих биологической активностью соединений, выбранных из группы (а), и соединений, выбранных из группы (b), причем взаимодействуют между собой соединения групп (а) и (b), которые характеризуются противоположными - протонодонорной (с) и протоноакцепторной (d) способностями, при этом группа (а) включает арилоксикарбоновые кислоты, ароматические карбоновые кислоты с различными заместителями - галоген; NH2, OCH 3, пиридинкарбоновые кислоты с различными заместителями - галоген NH2, фосфоновые кислоты, содержащие функционально-активную карбоксильную группу (-СООН)(с), - азолсодержащие структуры с различными заместителями, содержащие триазольный реакционный центр (d) - циклогексендионсодержащие структуры, содержащие общий сопряженный кетоно-енольный фрагмент (с) - замещенные сульфонилмочевины, содержащие мочевинный фрагмент а группа (b) включает- третичные алкиламины, содержащие по меньшей мере одну алкильную группу с числом атомов углерода не менее 8 (d);- оксиэтилированные алкиламины с числом оксиэтилированных групп -О-СН2-СН2 - не менее 4 (d);- линейные алкилсульфоновые кислоты R-SO3H, где R содержит не менее 8 атомов углерода (с);- алкилбензолсульфоновые кислоты R-С6 Н4SO3H, где R содержит не менее 8 атомов углерода (с);при этом оно характеризуется способностью образовывать водные мицеллярные растворы, а критическая концентрация мицеллообразования составляет 0,05-020 мас.%.

2. Химическое соединение по п.1, отличающееся тем, что оно характеризуется поверхностным натяжением 0,5%-ного водного раствора на границе с воздухом в интервале значений 28-35 мН/м.

3. Химическое соединение по п.1, отличающееся тем, что оно характеризуются способностью образовывать микроэмульсии в присутствии органического растворителя.

4. Химическое соединение по п.1, отличающееся тем, что они применимо в качестве действующих веществ при формуляции препаративных форм пестицидных препаратов.





Популярные патенты:

2149547 Пневматический опрыскиватель

... и агрегатов, а также качественного масла, что также влияет на эффективность и безотказность работы опрыскивателя. Задачей изобретения является повышение эффективности работы опрыскивателя и снижение его желательного действия на окружающую среду. Решение поставленной задачи достигается тем, что пневматический опрыскиватель, содержащий раму, резервуар для рабочей жидкости с указателем уровня, заливным фильтром, штангу, питающую магистраль с фильтром и отсечным устройством, дополнительно снабжен воздушным нагнетателем, клиноременной передачей, воздушным распределителем, воздухопроводами, краном-регулятором расхода рабочей жидкости, пневматическим распыливающим наконечником, ...


2192721 Орудие для обработки засоленных почв

... воды из почвенного слоя. Отъемное лезвие 7 нарезает вертикальную щель в подпахотном слое. Щель, нарезанная нижней частью стойки 4, незначительно смещена в сторону стойки 3. Завершает подготовку очаговых резервуаров отъемное лезвие 8 на верхней части стойки 4. Смещение отъемного лезвия 10 на стойке 3 по сравнению с отъемным лезвием 8 на стойке 4 на ход по ходу движения орудия исключает заклинивание верхнего слоя почвы между верхними частями стоек 3 и 4 и подвергает пласт почвы дополнительному крошению. Аналогичное положение лезвий 7 и 9 на нижних участках стоек 3 и 4 позволяет снизить общее тяговое сопротивление орудия. Выпадение достаточного количества естественных ...


2127256 Замещенные простые оксимовые эфиры и фунгицидное, инсектицидное, арахноицидное средство

... и базидиомицетов и могут применяться в качестве листовых и почвенных фунгицидов. Частично они обладают заслуживающей внимания высокой системной подвижностью и эффективностью при почвенном и, в частности, также листовом применении. Особое значение имеют они для борьбы с множеством грибков на различных культурных растениях, как, например, пшеница, рожь, ячмень, овес, рис, кукуруза, злаки, хлопок, соя, кофейное дерево, сахарный тростник, виноградные, плодовые и декоративные растения и овощные растения, как, например, огурцы, бобы и тыквенные, а также на семенах этих растений. Особенно подходят они для борьбы со следующими болезнями растений: Erysiphe graminis (мучнистая роса) ...


2277321 Колосоподъемник для косилочных систем уборочных машин

... опускания косилочного стола настолько, чтобы лоток 7 режущего аппарата прилегал к почве 6. Первый конец 8 несущей линейки 5, изготовленной из полосового материала в качестве исходного материала, может быть закреплен на косилочном брусе 1, например, за счет вильчатого выполнения посредством закрепленной болтом 3 шайбы с кольцевой канавкой. На удаленном от первого конца 8 втором конце 9 на несущей линейке 5 закреплен стеблеподъемник 10, который проходит под углом к несущей линейке 5, раскрытым в направлении косилочного бруса 1. Несущая линейка 5 оперта посредством кронштейна 10 на косилочный палец 2 или на его обращенную от несущей линейки 5 верхнюю поверхность. Как видно из фиг.2, ...


2007081 Способ биологической борьбы с вредителями капусты

... в привлечении паразитов вредителей к полям посредством подсева нектароносных растений, таких как тмин, кориандр, анис, укроп, сельдерей, фенхель, обеспечивая такое их сочетание, чтобы осуществить непрерывное их цветение с мая до сентября. 3 табл. , ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Изобретение относится к сельскому хозяйству, в частности к биологической защите растений от вредителей, и может быть использовано при борьбе с вредителями капусты. Известны различные способы биологической борьбы с вредителями капусты, среди которых в последнее время перспективным считается использование и повышение эффективности природных популяций энтомофагов путем создания ...


Еще из этого раздела:

2020793 Способ выращивания растений и стаканчик для его осуществления

2172085 Способ управления групповым вождением машин

2204241 Способ определения поливных норм при капельном орошении томатов

2422377 Биоцидный концентрат

2086081 Рабочий орган культиватора

2027346 Лесозаготовительная машина

2384052 Способ повышения эмбриональной жизнеспособности и естественной резистентности цыплят-бройлеров

2502793 Масло, семена и растения подсолнечника с модифицированным распределением жирных кислот в молекуле триацилглицерина

2265444 Способ консервирования пантов

2199860 Способ увеличения устойчивости подсолнечника к действию гербицида