Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ обработки солоноватых вод, включая воды с повышенной жесткостью, и установка для его осуществления

 
Международная патентная классификация:       A01C C02F

Патент на изобретение №:      2281255

Автор:      Василевский Владимир Павлович (RU), Новицкий Эдуард Григорьевич (RU), Хамизов Руслан Хажсетович (RU)

Патентообладатель:      Открытое акционерное общество "Научно-исследовательский и конструкторский институт химического машиностроения" (RU)

Дата публикации:      10 Августа, 2006

Начало действия патента:      21 Декабря, 2004

Адрес для переписки:      127015, Москва, ул. Б. Новодмитровская, 14, ОАО "НИИХИММАШ", начальнику отдела 37 З.А. Макаровой


Изображения





Изобретение относится к обработке солоноватых вод повышенного (5-10 г/л) солесодержания, а также вод с высокой концентрацией солей жесткости (>15 мг-экв/л), и может быть использовано в регионах поливного земледелия с дефицитом пресной воды для орошения, для возделывания сельскохозяйственных культур в системах защищенного грунта. Способ обработки солоноватых вод включает последовательное их пропускание через катионит и анионит в ионных формах, содержащих в качестве катионов и анионов элементы, входящие в состав растворимых в воде минеральных удобрений, с получением растворов минеральных удобрений, причем обрабатываемую воду сначала пропускают через катионит, затем часть выходящей из него воды пропускают через анионит, а другую часть попускают через электродиализный опреснитель, после чего эти потоки смешивают перед подачей на полив, при этом концентрат из электродиализного аппарата возвращают в процесс на стадию обработки катионита. Установка, предназначенная для реализации способа, включает блоки приготовления растворов для обработки катионита и анионита, блок ионного обмена, состоящий, по крайней мере, из одного катионообменного и одного анионообменного аппаратов, катиониты и аниониты которых находятся в ионных формах, содержащих в качестве катионов и анионов элементы, входящие в состав растворимых в воде минеральных удобрений, насосы, трубопроводы и арматуру, причем она дополнительно содержит блок корректировки состава раствора минерального удобрения, включающий электродиализный опреснитель и аппарат-смеситель, при этом входной патрубок опреснителя связан с линией отвода продукта катионирования из катионообменника, патрубок выхода пресной воды связан с аппаратом-смесителем, а патрубок выхода концентрата связан с емкостью приготовления раствора для обработки катионита, а аппарат-смеситель содержит также патрубок для ввода раствора минерального удобрения, выходящего из анионообменного аппарата, и патрубок подачи сбалансированного раствора минерального удобрения на обработку почвы. Изобретение позволяет обеспечить необходимые значения соотношения вода: удобрение при обработке плантаций различных сельскохозяйственных культур. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к сельскому хозяйству и может быть использовано в мелиорации и агрохимии для получения растворов минеральных удобрений, предназначенных для орошения и одновременного внесения удобрений при возделывании сельскохозяйственных культур.

Изобретение может быть успешно использовано в регионах поливного земледелия с дефицитом пресной воды для орошения, для возделывания сельскохозяйственных культур в системах защищенного грунта. Изобретение может быть также использовано для обработки солоноватых вод повышенного (до 10 г/л) солесодержания, а также вод с высокой концентрацией солей жесткости (>15 мг-экв/л) с целью достижения оптимального соотношения между необходимым количеством удобрения и воды для орошения.

Известен способ получения раствора минеральных удобрений на основе пресных и минерализованных вод, включающий растворение удобрений в воде, в том числе минерализованной [О.Г.Грамматикати, А.А.Абаева, "Роль микро- и макроудобрений в улучшении свойств минерализованных вод", Сборник научных трудов "Повышение качества оросительной воды", М., ВО "Агропромиздат", 1990, с.41-45]. Недостатком этого способа является невозможность замены агрохимически вредных ионов минерализованной воды (например, натрия и хлора) на компоненты полезных минеральных удобрений. Это ограничивает возможности применения способа, поскольку согласно агрохимическим нормам, содержание хлорида натрия в воде для полива должно быть не более 2 г/л.

Близким техническим решением к предлагаемому является установка для получения раствора минеральных удобрений, включающая блок приготовления раствора, линию подачи исходной воды и линию отвода готового продукта [Авторское свидетельство СССР №82032, кл. А 01 С 21/100, опубл. 5.04.61 г.]. Блок приготовления раствора выполнен в виде бачка с мешалкой. Соответствующее минеральное удобрение заливается необходимым количеством воды и полученный после перемешивания раствор направляется через трубопровод на полив. Известная установка позволяет только вводить исходные удобрения в воду и поэтому сохраняет все недостатки исходных компонентов: сохранение в полученном растворе агрохимически вредных компонентов, невозможность оптимизировать состав применяемых удобрений.

Наиболее близким техническим решением является способ получения раствора минеральных удобрений на основе минерализованной и/или пресной воды и установка для его осуществления [Патент РФ №2138149, кл С1, опубл. 27.09.99 г. Бюл. №27]. Согласно известному способу исходную минерализованную воду пропускают последовательно через катионит и анионит в форме катионов и анионов минеральных удобрений, при этом все агрохимически вредные катионы и анионы исходной воды задерживаются соответственно катионитом и анионитом, а в получаемый раствор переходят катионы и анионы полезных минеральных удобрений. При этом эквивалентные концентрации полезных катионов и анионов в полученном растворе минеральных удобрений соответствуют эквивалентной концентрации солей в исходной минерализованной воде. При солесодержании исходной воды, превышающем 5 г/л, это не позволяет напрямую применять полученный раствор минеральных удобрений, поскольку возникает дисбаланс между необходимыми количествами удобрений и воды (см. таблицу). Частично эта проблема решается путем разбавления полученного раствора удобрений исходной минерализованной водой. Однако этот прием невозможно использовать при обработке вод с минерализацией выше 4 г/л и с содержанием солей жесткости не более 15 мг-экв/л, поскольку в этом случае поливочный раствор будет содержать агрономически неприемлемые количества ионов натрия, кальция и хлора.

Таким образом, существенным недостатком известного способа является невозможность обрабатывать солоноватые воды с жесткостью >0,15 мг-экв/л.

БАЛАНС между необходимой для полива воды и количеством вносимых при поливе удобрений (на примере обработки плантаций оливковых деревьев) Соленость исходной воды, г/лОбеспечение нормы полива, %Обеспечение нормы внесения удобрений, %2,5 1001005,0 50100 10,025100

Установка согласно известному изобретению включает блок ионного обмена, состоящий по крайней мере из двух наполненных соответственно катионитом и анионитом колонн, два блока подготовки и подачи обрабатывающих растворов, состоящие каждый из емкости для приготовления обрабатывающих растворов и насоса для подачи их в систему, установка включает также систему трубопроводов с соответствующей арматурой, обеспечивающей контроль и управление работой установки.

Недостатком известной установки является отсутствие блока, обеспечивающего возможность удаления солей жесткости и регулирования баланса между необходимой для полива воды и количеством вносимых с ней удобрений при обработке плантаций различных культур.

Известны способы опреснения солоноватых вод методами электродиализа, термодистилляции и обратного осмоса. Наиболее близким по техническому решению является способ электродиализного опреснения, поскольку этот способ не связан с необходимостью применения высоких температур (как в термодистилляции), или высоких давлений (как в обратном осмосе) и является наиболее оптимальным для опреснения солоноватых вод.

Наиболее близким к предлагаемому техническому решению является электродиализный аппарат для обессоливания скважинных солоноватых вод, включающий электродиализатор, насос и систему электропитания (Е.Novitsky, R.Khamizov. WATER AND WASTE WATER TREATMENT. "Enciclopedia of life support system" in "Knowledge sustaining development", v.2, ch.8.3, p.13, 2002). Аппарат состоит из двух электродов (катода и анода), выполненных в виде пластин из нержавеющей стали, или титана с покрытием или без него, или других материалов, в пространстве между которыми последовательно расположены катионо- и анионообменные мембраны, образующие дилюатные камеры и камеры концентрирования. Опресняемая вода подается в дилюатные камеры, где за счет воздействия электрического поля, создаваемого электродами, катионы и анионы диссоциированных солей проникают через соответствующие мембраны в камеры концентрирования, откуда образующийся поток концентрата солей выводится из аппарата в качестве отхода, а обессоленная вода из дилюатных камер отводится на потребление.

Задачей технического решения является создание технологических условий, обеспечивающих получение сбалансированных по составу растворов минеральных удобрений при обработке вод с повышенным (>15 мг-экв/л) содержанием солей жесткости.

Поставленная задача решаются тем, что раствор минеральных удобрений для подкормки растений и ирригации почв получают следующим образом.

Поток исходной воды пропускают через катионит в форме катиона, являющегося элементом минерального удобрения. Образующийся раствор катиона минерального удобрения делят на два потока. Один поток пропускают через анионит в форме аниона, являющегося элементом минерального удобрения, и образующийся раствор минерального удобрения направляют в блок балансирования состава. Другой поток раствора, не содержащий катионов солей жесткости, направляют в электродиализный опреснитель. Образующийся при опреснении концентрированный раствор полезного катиона направляют в емкость приготовления раствора для обработки катионита согласно прототипу, а пресную воду - в аппарат балансирования состава на смешение с раствором минеральных удобрений и далее на потребление. Соотношение между разделяемыми потоками рассчитывается таким образом, чтобы обеспечить требуемый баланс содержания удобрений и воды в растворе, направляемом на потребление.

На чертеже представлена схема установки для осуществления предлагаемого способа, где I и II - емкости для приготовления обрабатывающих растворов минеральных удобрений; III и IV - катионообменный и анионообменный аппараты; V - электродиализный опреснитель; VI - аппарат смешения для балансирования состава раствора минерального удобрения; Н-1 и Н-2 - насосы; 1-20 - клапаны. Подготовительные операции получения растворов минеральных удобрений в емкостях I (раствор с катионом минерального удобрения) и II (раствор с анионом минерального удобрения), а также перевод катиононита и анионита соответственно в форму катиона минерального удобрения (например, калия) и аниона минерального удобрения (например, нитрата) в ионообменных аппаратах III и IV осуществляют согласно прототипу (патент РФ №2138149).

По завершении перечисленных операций исходная вода при открытых клапанах 4, 5, 8, 18 и 19 поступает в аппарат III, а выходящий из него раствор в форме катиона минерального удобрения (катионы жесткости удалены) делится на два потока. Один поток поступает в аппарат IV и полученный раствор минерального удобрения после этого поступает в аппарат VI для балансирования состава. Другой поток через клапан 18 поступает в опреснитель V. Пресная вода из опреснителя подается в аппарат VI, а концентрированный раствор полезного катиона через клапан 19 возвращается в емкость I для приготовления обрабатывающего раствора. Соотношение между разделяемыми после аппарата III потоками регулируется клапанами 8 и 18. Нормальное положение клапана 17 - закрытое.

Пример. Используют установку, представленную на чертеже, со следующими характеристиками. Аппарат III содержит катионообменную смолу в форме катиона калия (К+), аппарат IV - анионообменную смолу в форме аниона нитрат-иона (NO3 -).

Используют исходную подземную солоноватую воду с повышенной жесткостью следующего состава по макрокомпонентам (концентрация в г/л): Na+ - 1,26; Са2+ - 0,48; Mg2+ - 0,07; Cl- - 2,01; SO4 2- - 1,34. Общая минерализация 5,16 г/л, общая жесткость 24,6 мг-экв/л. Открывают клапаны 4, 5, 8, 18 и 19, включают насос Н-1. Подают исходную воду в установку с расходом 3,7 м3/ч. При этом клапаны 8 и 18 выставлены таким образом, что через клапан 8 проходит 1,05 м3 /ч, а чрез клапан 18 - 2,65 м3/ч калийсодержащего раствора. Выходящий из аппарата IV продукт (раствор KNO3 с концентрацией 8,5 г/л) поступает через клапан 12 с расходом 1 м3/ч в аппарат смешения VI (0,05 м3/ч составляют потери с регенератом). Калийсодержащий раствор после аппарата III с расходом 2,65 м3/ч через клапан 18 подается в электродиализатор V на опреснение. Пресная вода с расходом 2,5 м3/ч (0,15 м3/ч составляют концентрат) подается в аппарат VI, где в результате смешения образуется раствор минерального удобрения. Таким образам, на потребление из блока усреднения состава уходит раствор минерального удобрения KNO3 с расходом 3,5 м3/ч со средней концентрацией KNO3 2,45 г/л, что соответствует нормам согласно таблице. Концентрат, выходящий из электродиализатора V, содержит 70 г/л солей калия и направляется в емкость I для приготовления обрабатывающего раствора.

Установка для обработки солоноватых вод с повышенной жесткостью включает блоки приготовления растворов для обработки катионита и анионита, блок ионного обмена, состоящий по крайней мере из одного катионообменного и одного анионообменного аппаратов, содержащих катионит и анионит соответственно в форме катиона и аниона минерального удобрения, насосы, трубопроводы, арматуру, а также блок усреднения состава готового раствора минерального удобрения.

Блок состоит из одного, или нескольких электродиализных аппаратов, обеспечивающих эффективную работу установки при заданной производительности, солесодержании и жесткости обрабатываемой солоноватой воды. Блок также включает аппарат-смеситель для приготовления сбалансированного раствора минерального удобрения.

Конструкция установки предусматривает режим работы опреснительного аппарата при жесткости исходной воды более 15 мг-экв/л, когда опресняют промежуточный продукт, образующийся после стадии замены в катионообменном аппарате катионов исходной воды на катион минерального удобрения. При этом пресная вода после электродиализатора поступает в аппарат-смеситель для корректировки состава поливочной воды, обеспечивая соблюдение баланса между количеством воды и количеством удобрений, вносимых в почву, а концентрат, представляющий собой концентрированный раствор соли катиона минерального удобрения, возвращают в процесс обработки катионита. Аппарат-смеситель представляет собой емкость, снабженную известными перемешивающими устройствами.

Формула изобретения

1. Способ обработки солоноватых вод путем последовательного их пропускания через катионит и анионит в ионных формах, содержащих в качестве катионов и анионов элементы, входящие в состав растворимых в воде минеральных удобрений, с получением растворов минеральных удобрений, отличающийся тем, что, с целью обработки солоноватых вод с повышенной жесткостью (содержание катионов жесткости >15 мг-экв/л) и минерализацией (солесодержание до 10 г/л), обрабатываемую воду сначала пропускают через катионит, затем часть выходящей из него воды пропускают через анионит, а другую часть попускают через электродиализный опреснитель, после чего эти потоки смешивают перед подачей на полив, при этом концентрат из электродиализного аппарата возвращают в процесс на стадию обработки катионита.

2. Установка для обработки солоноватых вод с повышенной жесткостью и минерализацией, включающая блоки приготовления растворов для обработки катионита и анионита, блок ионного обмена, состоящий, по крайней мере, из одного катионообменного и одного анионообменного аппаратов, катиониты и аниониты которых находятся в ионных формах, содержащих в качестве катионов и анионов элементы, входящие в состав растворимых в воде минеральных удобрений, насосы, трубопроводы и арматуру, отличающаяся тем, что она содержит блок корректировки состава раствора минерального удобрения, включающий электродиализный опреснитель и аппарат-смеситель, при этом входной патрубок опреснителя связан с линией отвода продукта катионирования из катионообменника, патрубок выхода пресной воды связан с аппаратом-смесителем, а патрубок выхода концентрата связан с емкостью приготовления раствора для обработки катионита, а аппарат-смеситель содержит также патрубок для ввода раствора минерального удобрения, выходящего из анионообменного аппарата, и патрубок подачи сбалансированного раствора минерального удобрения на обработку почвы.





Популярные патенты:

2245017 Способ подготовки картофеля перед закладкой на хранение

... жидкой двуокисью углерода из биомассы микромицетов родов Mortierella, Pythium получают липидсодержащие экстракты, обладающие антиоксидантной активностью (Ломачинский В.А., Квасенков О.И., “Технология производства липидных экстрактов из биомассы микроорганизмов”, Научно-практическая конференция “Прогрессивные, экологически безопасные технологии хранения и комплексной переработки сельхозпродукции для создания продуктов питания повышенной пищевой и биологической ценности”, Тезисы докладов, М., РАСХН, 1999, с.253-254. Последовательное экстрагирование биомасс микроорганизмов неполярным экстрагентом, водой, щелочью, водой, кислотой, водой, щелочью и водой приводит к получению в ...


2295848 Способ дезинсекции и дезинфекции материалов зернового происхождения и устройство для его осуществления

... дополнительный узел ввода СВЧ энергии, герметизирующий диэлектрик, формирователь вихревого газового потока и узел поджига плазмы. Волноводы подсоединены к внешнему проводнику основного узла ввода СВЧ энергии так, что их широкие стенки параллельны оси устройства. Дополнительный узел ввода СВЧ энергии размещен вблизи верхнего днища основного узла ввода СВЧ энергии и подключен к нему через окно во внешнем проводнике этого узла. Дополнительный узел ввода СВЧ выполнен в виде прямоугольного волновода, узкая стенка которого параллельна оси устройства. Использование изобретения позволит повысить производительность и равномерность обработки зернового материала по поперечному сечению ...


2403703 Способ интенсификации роста растений

... 17 557,4 30918 20 57,1301 Из приведенных материалов следует, что максимальные результаты достигаются с модуля ванны 3-5, повышать модуль ванн выше этих значений нецелесообразно. Пример 19. В зимней теплице семена огурцов сорта «Марфинский» сажают, как рассаду, и на 40-й день, по достижении готовности, рассаду высаживают в грунт. За 5 месяцев пребывания культуры на грунте урожайность зеленцов составляет 23 кг/м2.Пример 20. По примеру 19, отличающемуся тем, что перед посадкой рассады семена огурцов обрабатывают в течение 45 минут при модуле ванны 3 активированной водой, приготовленной путем кипячения и последующего охлаждения до температуры окружающей среды, при этом, ...


2413409 Способ и устройство для уплотнения убранной массы для получения силоса

... шарового сегмента или полусферы, на поверхности 25 которой предусмотрены ребристые скребки 26. Уплотнительные элементы 23 установлены с возможностью привода во вращательное или колебательное движение вокруг вертикальных осей 31 вращения, перпендикулярных прижимной или скользящей поверхности 20. Для этого основное тело 24 уплотнительного элемента 23 жестко соединено с валом 27 и может приводиться от вала 35 отбора мощности трактора через трансмиссию 28, которая подробно не описывается. Возможен также вариант выполнения, в котором положение осей 31 вращения уплотнительных элементов 23 относительно прижимной или скользящей поверхности 20 может регулироваться. Сверху на несущей раме 16 ...


2232490 Машина для обработки почвы

... между ограничителями оси. Трубчатая стойка 65 /фиг.6в,г,д,е,ж/, ролики 66 за лемехами 67, с зубьями 68 могут вносить материалы в почвы, выкапывать клубнеплоды при установке за копающими лемехами 69. Ролик 70 может вращать ротор 66. Плуги 71 /фиг.6и,к,л,м,н/ с роликами 72 автономно или с дисками 73 и сошниками 74, плоскорезами 75 на осях поворота между ограничителями 76 могут перемещаться в ведущем, тормозном и нейтральном режимах, как это обозначено буквами В,Т,Н. Избыточную движущую силу снижают самоуравновешиванием корпуса 77 с подплужниками 78 противодействия толкающей силе отвала /фиг.7а,в,г,д,е,ж/ при дистанционной работе и большой длине механической руки на опасных ...


Еще из этого раздела:

2384038 Устройство для посадки сеянцев, выращенных в контейнерах

2494588 Лемех плуга

2139657 Инсектицидная композиция

2163758 Способ и устройство контроля количества меда в улье

2248687 Способ весеннего боронования озимых культур и зубовая борона для его осуществления

2019938 Рабочий орган почвообрабатывающей машины

2444769 Жидкостный резервуар, устройство наблюдения для наблюдения под поверхностью жидкости и оптическая пленка

2423033 Способ укрепления склонов посевом семян древесных растений

2228024 Способ профилактики мастита у коров и устройство для его осуществления

2161391 Комбинированная почвообрабатывающая посевная машина