Биохимический способ выделения растений с различным типом развития из популяции озимо-яровых гибридов зерновых культурПатент на изобретение №: 2005349 Автор: Сысоев А.Ф., Мусич В.Н., Корнелли Б.М. Патентообладатель: Селекционно-генетический институт Дата публикации: 15 Января, 1994 Адрес для переписки: подача заявки05.12.1990 публикация патента15.01.1994 ИзображенияИспользование: селекционно-генетические исследования зерновых, способы селекции сортов пшеницы и ячменя с различным типом развития. Сущность изобретения: семена проращивают до получения проростков и воздействуют на них пониженной температурой. Перед воздействием пониженной температурой проводят двукратную вакуум-фильтрацию 0,005% -ного раствора 2,3,5-трифенилтетразолия хлорида или нитротемтразолия синего. Воздействуют на них пониженной температурой 5 - 6С в течение 3 ч в темноте, определяют активность ферментативных систем по окраске корешков и выделяют как растения с озимым типом развития проростки с окрашенным и корешками и как яровые - неокрашенные. 1 табл. ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к селекционно-генетическим исследованиям зерновых и может найти применение во всех работах по селекции сортов пшеницы и ячменя с различным типом развития, а также в генетических исследованиях, связанных с изучением наследования озимости и яровости. В настоящее время большое внимание уделяется селекционным программам, предусматривающим наращивание реальной продуктивности растений. Привлечение в гибридизацию форм, различающихся по типу развития, является одним из перспективных путей дальнейшего повышения продуктивности растений. Селекционные программы, предусматривающие выведение новых сортов, сочетающих высокую продуктивность с другими ценными свойствами, все чаще направлены по пути скрещивания между собой озимых и яровых генотипов пшеницы и ячменя. В полученных гибридных популяциях от скрещивания яровых сортов с озимыми, помимо гомозиготных растений с озимым и яровым типом развития, присутствуют в значительных количествах также гетерозиготные формы. В зависимости от целей селекции необходимо отобрать гомозиготы - озимые или яровые формы растений. Известны способы распознавания яровых и озимых генотипов по морфологическим показателям: Выколашивание яровых форм и его отсутствие у озимых при весеннем посеве в полевых условиях. Быстрый выход в трубку яровых растений и отсутствие трубкования у озимых в условиях круглосуточного освещения. Более интенсивный рост конуса нарастания у яровых пшениц и замедленный у озимых при выращивании их на непрерывном дне. Цитологический метод определения озимых и яровых генотипов пшеницы. Способ отбора растений из популяций гибридов пшеницы. По показателю омического сопротивления в проростках (прототип). Все перечисленные методы имеют те или иные недостатки, снижающие эффективность селекционного процесса: Для выделения растений с необходимым характером развития нужны большие посевы. В течение года в этом случае можно осуществить только однократный отбор. В случае же использования сооружений искусственного климата - это дорогостоящая операция. При сравнительной регистрации выхода в трубку при круглосуточном освещении необходимы существенные энергетические затраты в течение 60-70 сут. Использование цитологического способа по характеристике конуса нарастания не позволяет сохранить проросток для дальнейшего выращивания, т. е. не обеспечивается решающее условие для селекции - возможности индивидуального отбора растений на начальных этапах селекционного процесса. Способ трудоемкий, требует специальной аппаратуры, дорогостоящих реактивов и высокой квалификации исполнителя. Способ отбора растений из гибридных популяций (прототип) хотя и лишен выше перечисленных недостатков, но, в свою очередь, имеет ряд других, присущих ему: а) требуется наличие климатических камер для выращивания проростков в течение 4-5 сут; б) охлаждение проростков при непрерывном освещении в течение 3 сут в климатических камерах; в) замер сопротивления на специальных приборах. Предлагаемый способ разделения проростков озимо-яровых гибридов пшеницы и ячменя основан на выявлении генетически детерминированных озимых и яровых форм пшеницы и ячменя по активности ферментов окислительно-восстановительного цикла. Проведенными ранее исследованиями было показано, что озимые сорта пшеницы и ячменя по активности ферментативных систем, принимающих участие в дыхании проростков, после закаливания их к низким температурам существенно превосходят яровые сорта. По активности ферментов дегидрогеназ. Четкие различия наблюдаются и без закаливания проростков, что указывает на генетические различия проростков яровых и озимых пшениц и ячменя (см. таблицу). Вскрытые различия озимых и яровых злаков по активности бессубстратных дегидрогеназ послужили новым принципом для разработки способа разделения озимых и яровых генотипов в популяциях озимо-яровых гибридов. Определение активности ферментов дегидрогеназ осуществляется по их реакции с 2,3,5-трифенилтетразолий хлоридом, в котором водород, отнятый дегидрогеназами от субстратов в бескислородной среде, передается ТТХ, что приводит к его восстановлению и образованию фармазона, имеющего красную окраску. В целях сохранения проростков после анализа живыми, пригодными для последующего выращивания и получения семян, для удаления кислорода и введения ТТХ в межклетники корешков без их измельчения, используют двухкратную вакуум-инфильтрацию растворов ТТХ. Оценка интенсивности окраски корешков осуществляется визуально после 3-часового выдерживания проростков в темноте при (+5)-(+6)оС в бытовом холодильнике. Пример осуществления способа. Семена гибридов (F1) пшеницы и ячменя замачивают в воде в течение 24 ч при комнатной температуре (18-25оС). После этого воду сливают, семена размещают в один слой в чашках Петри (без фильтровальной бумаги) и проращивают до величины корешков 0,8-1,0 см при той же температуре (2 сут). Затем проростки помещают в широкие пробирки либо в стаканы, кристаллизаторы и др. емкости строго корешками вниз, прикрывают проволочной сеткой (предохраняющей от всплывания проростков из раствора при вакуум-инфильтрации) и заливают водным раствором трифенилтетразолий хлорида (ТТХ) в концентрации 50 мг в 1 л или 0,005% так, чтобы раствор полностью покрыл семена и корешки. Эта концентрация была выявлена эмпирическим путем в опытах, в которых использовались меньшие концентрации. При больших концентрациях способ не работает - все корешки окрашиваются. Емкости с проростками переносят в вакуум-эксикатор и проводят последовательно двухкратную вакуум-инфильтрацию раствора ТТХ в корешки по пять минут каждая, при остаточном давлении 15-20 мм рт. ст. Затем сливают раствор из емкостей, закрывают их крышками или пробками, укладывают пакет и помещают на 3 ч в бытовой холодильник при температуре (+5)-(+6)оС. После этого проводят разделение проростков по окраске корешков: окрашенные (красные или синие) - озимые, белые - яровые формы. Слабо розовые или окраска только у основания корешков свидетельствует о гетерозиготности растений. По такой же методике осуществляется вакуум-инфильтрация раствором нитротетразолий синий. Через 30 сут вегетации растения, полученные из проростков с белыми корешками (предполагаемые яровые), полностью выколашиваются, тогда как растения из проростков с красными корешками (предполагаемые озимые) остаются в стадии кущения. Таким образом, результаты проведенных экспериментов полностью подтвердили возможность разделения озимо-яровых гибридов по типу развития путем использования биохимического метода. П р и м е р. Изучение возможности разделения гибридов на яровые и озимые формы проводили на гибридных популяциях F2 пшеницы: Трайпл Дерк (яровая) х Эритроспермум 108 (озимая), ячменя: Run 12 (яровая) х Параллелум 347 (озимый), Н-2514 (яровой) х Паллидум 8439 (озимый). Семена замачивали 24 ч, после чего их помещали в чашки Петри в один слой. Через 24 ч отбирали проросшие семена с длиной корней 0,5-0,8 см и помещали в пробирки емкостью 25 мл. Заливали раствором трифенилтетразолия хлорида калия 0,005% и проводили вакуум-инфильтрацию в течение 5 мин дважды. Таким же образом была проделана вакуум-инфильтрация в растворе нитротетразолиевый синий другой партии проросших семян. После инфильтрации растворы из пробирок обеих партий были слиты в пробирки, в темных конвертах, помещены в холодильник при температуре 4. . . 6оС. Через 3 ч проводили оценку проростков по окраске корешков. Затем проростки были высажены в сосуды и выращивались в климатической камере. Через 30 сут вегетации растения, полученные из проростков с белыми корешками (предполагаемые яровые), полностью выколосились, тогда как растения из проростков с красными корешками (предполагаемые озимые) оставались в стадии кущения. Таким образом, результаты проведенного эксперимента полностью подтвердили возможность разделения озимо-яровых гибридов по типу развития путем использования биохимического метода. (56) Доклады АН СССР, т. 173, N 2, с. 427-474.ФОРМУЛА ИЗОБРЕТЕНИЯБИОХИМИЧЕСКИЙ СПОСОБ ВЫДЕЛЕНИЯ РАСТЕНИЙ С РАЗЛИЧНЫМ ТИПОМ РАЗВИТИЯ ИЗ ПОПУЛЯЦИИ ОЗИМО-ЯРОВЫХ ГИБРИДОВ ЗЕРНОВЫХ КУЛЬТУР, включающий проращивание семян до получения проростков, воздействие на них пониженной температурой, определение активности ферментных систем, принимающих участие в дыхании проростков, и выделение растений по активности ферментных систем, отличающийся тем, что, с целью упрощения способа и возможности использования выделенных яровых, озимых или гетерогенных растений для дальнейшего селекционного процесса, перед воздействием пониженной температурой проводят двукратную вакуум-фильтрацию 0,005% -ного раствора 2,3,5-трифенилтетразолия хлорида или нитротетразолия синего, воздействуют на них пониженной температурой 5 - 6oС в течение 3 ч в темноте, определяют активность ферментативных систем по окраске корешков и выделяют как растения с озимым типом развития проростки с окрашенными корешками и как яровые - неокрашенные.Популярные патенты: 2159030 Способ широкорядного посева пропашных культур ... почвы до посева семян с образованием и уплотнением дна и стенок щелевидных лож. Объемное рыхление почвы осуществляют на глубину 30 - 35 см; операции рыхления, дополнительной прикатки почвы, образования в почве уплотненных лож, укладки семян, закрытия почвой ложа и последующего прикатывания почвы проводят за один проход комбинированного агрегата; после посева проводят мелкодисперсное орошение. Способ иллюстрируется чертежом, где на фиг. 1 изображено состояние почвы до обработки (с почвенными агрегатами); на фиг. 2 - почва после вспашки на глубину 26 - 28 см с оборотом пласта и с заделкой в почву корневых и растительных остатков и семян сорняков и трав; на фиг. 3 - почва после ее ... 2479996 Экологический комплекс для аквакультуры и рекультивации морских вод ... элементов использованы накопительные мешки, в которых размещены конические элементы, обращенные вверх, основания которых закреплены под вертикальными коллекторами.Другой вариант ловушек фекалиев и псевдофекалиев моллюсков содержит перфорированный стакан, помещенный в накопительный мешок, конический элемент расположен в перфорированном стакане вершиной вниз, мешок выполнен из сетки, а пространство между стаканом и мешком заполнено фильтрующим материалом.В качестве устройств для выращивания водорослей использованы искусственные рифы, собранные из пустотелых блоков и установленные под горизонтальными тросами. Наличие в комплексе культиватора корма, распределительной системы, ... 2201065 Приемная часть осевого сепаратора ... уменьшается радиус описанной окружности заборной части 5 ротора. Кожух приемной части 7 разъемно соединен с кожухом 16 сепаратора с помощью переходного соединительного фланца 15. Приемная головка 14 кожуха приемной части 7 усилена не показанными здесь элементами жесткости, и на ее верхней части съемно укреплена несущая стойка для передней опоры сепарирующего ротора 6. На фиг. 1-3 представлен пример выполнения приемной части для молотильно-сепарирующего аппарата осевого потока или осевого сепаратора, однако специалисту понятно, что решение может быть легко использовано и в других областях применения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Приемная часть осевого сепаратора или ... 2113779 Агромост ... орудия, взаимодействующие с грунтом, например лапы культиваторов или выкапывающий аппарат комбайна, что не дает возможности использовать агромост в автоматическом режиме. Технический результат - повышение производительности и расширение функциональных и эксплуатационных возможностей. Данный технический результат достигается тем, что на ферме агромоста закреплены накопительный бункер и размещенные под ним дозировочные бункеры. На фиг. 1 изображен агромост с четырьмя сельхозорудиями для уборки сельхозкультур во время безостановочного фронтального движения вдоль агроугодья; на фиг. 2 - накопительный и два дозировочных бункера, вид сбоку; на фиг. 3 - ферма агромоста, поперечный ... 2067832 Способ борьбы с грибковыми инфекциями растений ... 2,4,6-трихлорфенил, 4-хлорфенил, 2,4,5-трихлорфенил, 2,4-дихлорфенил или тетрафторэтоксифенил. Соединения общей формулы (I) являются очень мощными ингибиторами роста отдельных видов патогенных грибков, поражающих посадки культурных растений. Эти соединения проявляют как профилактическую, так и лечебную активность при их нанесении на культурные растения или на части таких растений, например листья, в результате чего оказываются особенно эффективными для профилактики заболеваний, вызываемых распространенными патогенными грибками, такими как, например, рода Erisiphe и рода Puccinia. Для практического применения в сельском хозяйстве часто удобнее иметь доступные фунгицидные ... |
Еще из этого раздела: 2067798 Агромостовой комплекс 2092004 Композиционный состав для обработки растений и их органов 2051575 Способ отделения дождевых червей от среды обитания и устройство для его осуществления 2465761 Способ повышения плодородия песчаных почв 2024226 Производные s- -тиоакриламидов и композиция для предотвращения или ингибирования роста бактерий 2095957 Устройство для транспортирования подстилочного навоза 2193304 Захват лесозаготовительной машины 2280351 Установка для скашивания сорной растительной массы с берм и откосов канала 2492623 Портативный электроинструмент с управлением спусковым механизмом 2402211 Способ получения трансгенных кроликов, продуцирующих белки в молочную железу |