Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Замещенные 3,1-бензоксазино (1,2-с)(1,3) бензоксазины, проявляющие свойства активаторов прорастания семян пшеницы

 
Международная патентная классификация:       A01N C07D

Патент на изобретение №:      2206566

Автор:      Громачевская Е.В., Ненько Н.И., Кульневич В.Г., Смоляков В.П.

Патентообладатель:      Кубанский государственный технологический университет

Дата публикации:      20 Июня, 2003

Начало действия патента:      31 Мая, 2002

Адрес для переписки:      350072, г.Краснодар, ул. Московская, 2, КубГТУ, патентный отдел, Л.В.Ломакиной


Изображения





Описываются 3,1-бензоксазино(1,2-С)(1,3)бензоксазины общей формулы I, обладающие свойствами активаторов прорастания семян пшеницы где I.1. R, R1 - H; I.2 R - H, R1 - CH3; I.3. R - H, R1 - изоC4H9; I.4. R - NO2, R1 - H; I.5. R - NO2, R1 - CH3. Технический результат заключается в увеличении энергии прорастания, длины и сухой массы проростков и корней семян озимой пшеницы. 1 табл.

Изобретение относится к новым химическим биологически активным соединениям - замещенным 3,1-бензоксазино (1,2-с)(1,3) бензоксазинам формулы I: 4,4-дифенил-3,1-бензоксазино (1,2-с)(1,3) бензоксазину формулы I.1; 4,4-дифенил-11-метил-3,1-бензоксазино (1,2-с)(1,3) бензоксазину формулы I.2; 4,4-дифенил-11-изобутил-3,1-бензоксазино (1,2-с)(1,3) бензоксазину формулы I.3; 4,4-дифенил-15-нитро-3,1-бензоксазино (1,2-с)(1,3) бензоксазину формулы I.4; 4,4-дифенил-11-метил-15-нитро-3,1-бензоксазино (1,2-с)(1,3) бензоксазину формулы I.5, активирующим прорастание семян пшеницы.

I.1. R,R1 - H I.2. R - H, R1 - CH3 I.3. R - H, R1 - изоC2H9 I.4. R - NO2, R1 - H I.5. R - NO2, R1 - CH3 Указанные соединения, их химические и биологические свойства в литературе не известны.

В ряду замещенных 3,1-бензоксазинов известен 2,4,4-трифенил-1,2-дигидро-4Н-3,1-бензоксазин формулы II, проявляющий рострегулирующую активность на семенах озимой пшеницы [Ненько Н.И. и др. Рострегулирующая и антистрессовая активность производных 4,4-(дифенил)-1,2-дигидро-4Н-3,1-бензоксазина //Регуляторы роста и развития растений /тезисы доклада на IV международ конф., М., 24-26.06.1997.- М., 1997.- С. 63].

В качестве аналога по свойствам известен гиббереллин, широко используемый для активации прорастания семян.

Однако гиббереллин - дорогостоящий продукт микробиологического синтеза и малодоступен. Его применение вызывает нерациональную трату пластических веществ [Муромцев Г.С. и др. Основы химической регуляции роста и продуктивности растений. - М.: Агропромиздат, 1987. - C. 33-80].

Задачей настоящего изобретения является получение новых соединений, перспективных для химии биологически активных веществ, расширяющих ассортимент веществ с рострегулирующими свойствами в ряду замещенных 3,1-бензоксазинов, позволяющих улучшить посевные качества семян.

Это достигается синтезом новых неописанных ранее соединений - замещенных 3,1-бензоксазино (1,2-с)(1,3) бензоксазолинов, проявляющих свойства активаторов прорастания семян пшеницы.

Исходным соединением для получения соединений I.1-I.5 является о-аминофенилдифинилкарбинол формулы III. Последний получают с выходом до 80% из производимого отечественной промышленностью метилантранилата по известной методике взаимодействия сложных эфиров с реактивом Гриньяра [Реакции карбонильных соединений. - В кн.: Практикум по органической химии, т. II /Под ред. Потапова В.П., Пономарева С.В. Пер. с немецкого - М, С. 195-199].

Физико-химические константы карбинола III соответствуют литературным данным [A. Baeyer, V. Villiger. Dibenzolactone and Triphenylmethane. - Chem. Ber. 1904, 37, S. 3191-3210].

Соединения I.1-I.5 получают путем последовательных конденсаций: вначале карбинола III салициловыми альдегидами, затем образовавшихся дигидробензолсазинов IV.1 и IV.2 с рядом алифатических альдегидов Полученные соединения IV.1-IV.2 и I.1-I.5 идентифицированы по совокупности данных элементного анализа, ИК и ПМР-спектроскопии.

Изобретение иллюстрируется следующими примерами.

Пример 1. Получение 4,4-дифенил-11алкил-3,1-бензоксазино (1,2-с)(1,3) бензоксазинов I.1-I.3.

Процесс состоит из следующих стадий.

1 Стадия.

Синтез 2-(2-гидроксифенил)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазина (IV.1).

К раствору 2,75 г (0,01 моль) о-аминофенилдифенилкарбинола в 10 мл ледяной уксусной кислоты при охлаждении (ледяная баня) и перемешивании порциями прибавляют 1,22 г (0,01 моль) 2-гидроксибензальдегида. Затем смесь перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 2,85 г (75%) 2-(2-гидроксифенил)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазина (IV. 1).

Температура плавления 168-170C (из этанола).

Элементный анализ для С26Н21NO2: найдено, %: С 82,61; Н 5,32; N 3,73. Вычислено, %: С 82,32; Н 5,54; N 3,69. Спектр ПМР (DMSO d6): 4,40 (1Н, уш. с, NH); 5,60 (1Н, с, На); 6,90 (8Н, м, Нар), 7,20 и 7,35 [10Н, два с, (С6Н5)2] ; 8,40 (1Н, уш. с, ОН). ИК-спектр, , см-1: (N-C-O) 1020, 1070, 1100; (NH) 3300; (ОН) 3200-3070; (С=СНар) 3030, 1600, 1590.

2 Стадия.

Синтез 4,4-дифенил-3,1-бензоксазино (1,2-с)(1,3) бензоксазина (I.1).

Смесь 0,95 г (0,0025 моль) дигидробензоксазина (IV.1) и 0,2 мл формалина (содержащего 0,0025 моль формальдегида) в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение часа. Наблюдают исчезновение осадка исходного дигидробензоксазина и выпадение нового осадка. Осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 0,69 г (70%) продукта I.1.

Температура плавления 215oС (из толуола).

Элементный анализ для C27H21NO2: найдено, %: С 82,42; Н 5,62; N 3,20. Вычислено, %: С 82,86; Н 5,37; N 3,58. Спектр ПМР (CDCl3); , м.д: 5,15 и 5,25 (2Н, два д, Нв+Нс); 5,35 (1Н, с, На); 7,20 (18Н, м. Нар), 2Iнвнс=8,0 Гц. ИК-спектр, , см-1: (N-C-O) 1050, 1070, 1100; (С=СНар) 3030, 1600, 1590.

Синтез 4,4-дифенил-11-метил-3,1-бензоксазино (1,2-с)(1,3) бензоксазина (I.2).

Смесь 0,95 г (0,0025 моль) дигидробензоксазина (IV.1) и 0,11 г (0,0025 моль) уксусного альдегида в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 0,66 г (65%) продукта I.2.

Температура плавления 203-205oС (из толуола).

Элементный анализ для C28H23NO2: найдено, %: С 82,51; Н 5,83; N 3,21. Вычислено, %: С 82,96; Н 5,68; N 3,46. Спектр ПМР (CDCl3; , м.д: 1,62 (3Н, д, СН3); 5,35 (1Н, кв, Нв); 5,50 (1Н, с, На); 7,25 (18Н, м, Нар), 2Iнвнс=6,0 Гц. ИК-спектр, , см-1: (N-C-O) 1020, 1080, 1110; (С=СНар) 3030, 1600, 1580.

Синтез 4,4-дифенил-11-изобутил-3,1-бензоксазино (1,2-с)(1,3) бензоксазина (1.3).

Смесь 0,95 г (0,0025 моль) дигидробензоксазина (IV.1) и 0,18 г (0,0025 моль) изомасляного альдегида в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 0,67 г (60%) продукта I.3.

Температура плавления 172-173oС (из толуола).

Элементный анализ для C31H29NO2: найдено, %: С 83,57; Н 6,72; N 3,28. Вычислено, %: С 83,22; Н 6,48; N 3,13. Спектр ПМР (CDCl3); , м.д: 1,10 [6Н, д, (СН3)2]; 1,57 (2Н, м, СН3); 2,55 (1Н, м, СН); 5,40 (1Н, с, На); 5,71 (1Н, т, Нв); 7,05 (18Н, м, Нар), 3Iснсн3=6,9 Гц; 3Icнсн2=5,0 Гц. ИК-спектр, , см-1: (N-C-O) 1010, 1070, 1100; (С=СНар) 3030, 1610, 1590.

Пример 2. Получение 4,4-дифенил-11-алкил-15-нитро-3,1-бензоксазино (1,2-с)(1,3) бензоксазинов I.4-I.5.

Процесс состоит из следующих стадий.

1 Стадия.

Синтез 2-(2-гидрокси-5-нитрофенил)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазина (IV.2).

К раствору 2,75 г (0,01 моль) о-аминофенилдифенилкарбинола (III) в 10 мл ледяной уксусной кислоты при охлаждении (ледяная баня) и перемешивании порциями прибавляют 1,66 г (0,01 моль) 2-гидрокси-5-нитробензальдегида. Затем смесь перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 3,04 г (72%) 2-(2-гидрокси-5-нитрофенил)-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазина (IV.2).

Температура плавления 162-163oС (этанол).

Элементный анализ для C26H20N2O4: найдено, %: С 73,42; Н 4,58; N 6,75. Вычислено, %: С 73,58; Н 4,72; N 6,60. Спектр ПМР (DMSO d6) , м.д.: 4,45 (1Н, уш. с, NH); 5,60 (1Н, с, На); 6,80 (5Н, м, С6Н4+H), 7,30 и 7,40 [10Н, два с, (C6H5)2]; 7,95 (1Н, м, H); 8,15 (1Н, д, H/ ); 9,50 (1Н, уш. с, ОН); 3IHH=3,0 Гц. ИК-спектр, , см-1: (N-C-O) 1030, 1085, 1100; (NH) 3350; (ОН) 3600-3100; (NO2) 1520, 1325; (C=CHap) 3030, 1610, 1590.

2 Стадия.

Синтез 4,4-дифенил-15-нитро-3,1-бензоксазино (1,2-с)(1,3) бензоксазина (I.4) Смесь 1,06 г (0,0025 моль) дигидробензоксазина (IV.2) и 0,2 мл формалина (0,0025 моль формальдегида) в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 0,76 г (70%) продукта I.4.

Температура плавления 228-230oС (из бензола).

Элементный анализ для C27H20N2O4: найдено, %: С 74,55; Н 4,31; N 6,15. Вычислено, %: С 74,31; Н 4,58; N 6,42. Спектр ПМР (DMSO-d6); , м.д: 5,35 и 5,45 (2Н, два д, Нв+Нс); 5,55 (1Н, с, На); 7,25 [15Н, м, С6Н4+(С6Н5)2+H]; 7,90 (1Н, д, H); 8,20 (1Н, м, H). 3Iнвнс=7,5 Гц. ИК-спектр, , см-1: (N-C-О) 1020, 1070, 1100; (NO2) 1520, 1340; (C=CHap) 3030, 1600, 1580.

Синтез 4,4-дифенил-11-метил-15-нитро-3,1-бензоксазино (1,2-с)(1,3) бензоксазина (I.5).

Смесь 1,06 г (0,0025 моль) дигидробензоксазина (IV.2) и 0,11 г (0,0025 моль) уксусного альдегида в 10 мл уксусной кислоты перемешивают при комнатной температуре в течение часа. Выпавший осадок отфильтровывают, промывают раствором спирта в воде (1:3), сушат, получают 0,73 г (65%) продукта I. 5.

Температура плавления 218-220oС (из бензола).

Элементный анализ для C28H22N2O: найдено, %: С 74,42; Н 4,63; N 6,53. Вычислено, %: С 74,67; Н 4,89; N 6,22. Спектр ПМР (CDCl3); , м.д: 1,57 (3Н, д, СН3); 5,45 (1Н, кв, Нв); 5,75 (1Н, с. На); 7,15 [15Н, м, С6Н4+(С6Н5)2+H] ; 8,00 (1Н, д, H); 8,15 (1Н, м, H); 3ICHCH3=6,0 Гц; 3IHH =1,8 Гц. ИК-спектр, ,, см-1: (N-C-О) 1010, 1075, 1100; (NО2) 1510, 1350; (C=CHap) 3030, 1610, 1590.

Пример 3. Изучение рострегулирующей активности замещенных 3,1-бензоксазино (1,2-с)(1,3) бензоксазинов.

Ростгенерирующую активность замещенных 3,1-бензоксазино (1,2-с)(1,3) бензоксазинов I. 1-I. 5, аналога по свойствам - гиббереллина и аналога по строению - соединения формулы II - изучали на семенах озимой пшеницы сорта Победа-50.

Соединения I. 2-I. 5 применяли в виде водных растворов с массовой долей 0,005-0,00005%, соединение I.1 - 0,008-0,00008%. Аналог по строению - соединение II - применяли в виде водного раствора с массовой долей 0,001% и аналог по свойствам - гиббереллин - в виде водного раствора с массовой долей 0,001%.

В качестве контроля использовали семена, обработанные водой. Обработку семян проводили путем предпосевного замачивания их в водных растворах препаратов в течение 18 ч. В каждом образце использовали по 50 шт. семян. Повторность опыта - трехкратная. Семена проращивали в рулонах фильтровальной бумаги в течение 7 дней.

Об оптимальной ростактивирующей дозе и об активности соединений судили по таким показателям, как энергия прорастания семян, высота проростков, длина корней и их массы, потенциальная продуктивность проростков.

Результаты воздействия на посевные качества семян приведены в таблице.

Проведенные исследования позволили установить, что соединения I.1-I.5 проявляют свойства активаторов прорастания семян пшеницы.

Соединения I. 1-I. 5 в оптимальных ростактивирующих концентрациях не оказывают существенного влияния на энергию прорастания семян.

Соединение I. 1 в оптимальной ростстимулирующей концентрации 0,00008% активирует рост проростков, при этом высота проростков увеличивается на 4,3% и их масса - на 12,5%, длина корней - на 8,1% и их масса не изменяется и потенциальную продуктивность проростков - на 6,5% в сравнении с контролем.

При этом соединение I.1 по своей эффективности не уступает аналогам по строению и свойствам.

Соединение 1.2 в оптимальной ростстимулирующей концентрации 0,00025% увеличивает высоту проростка на 6,0% и его массу - на 14,1%, массу корней - на 22,9% и потенциальную продуктивность проростков - на 15,1% в сравнении с контролем. По своей эффективности воздействия на посевные качества семян соединение I.2 не уступает аналогам по структуре и свойствам.

Соединение I. 3 в оптимальной ростстимулирующей концентрации 0,0025% активирует рост проростков, увеличивая длину побеговой системы на 19,8%, ее массу - на 40,6%, длину корней - на 11,7%, их массу - на 10,4%, потенциальную продуктивность проростков - на 10,8%, в сравнении с контролем и по своей эффективности превосходит аналоги по строению и свойствам.

Соединение I. 4 в оптимальной ростстимулирующей концентрации 0,0005% не увеличивает высоту проростка, но активирует рост корневой системы, увеличивая длину корней на 17,1%, их массу - на 22,9%, потенциальную продуктивность - на 11,8%, в сравнении с контролем и по своей эффективности не уступает аналогам по структуре и свойствам.

Соединение I.5 в оптимальной ростстимулирующей концентрации 0,00025% активирует рост проростков, увеличивая их высоту - на 4,3%, массу - на 20,3%, длину корней - на 10,8%, их массу - на 22,9%, потенциальную продуктивность - на 20,4% в сравнении с контролем. Соединение I.5 по своей эффективности не уступает аналогам по структуре и свойствам.

Соединения I.1-I.5 являются эффективными активаторами прорастания семян пшеницы и могут найти применение в практике сельского хозяйства в качестве средств, улучшающих посевные качества семян пшеницы.

Формула изобретения

Замещенные 3,1-бензоксазино (1,2-с)(1,3)бензоксазины, проявляющие свойства активаторов прорастания семян пшеницы формулы I: 4,4-дифенил-3,1-бензоксазино(1,2-с)(1,3)бензоксазин формулы I.1; 4,4-дифенил-11-метил-3,1-бензоксазино(1,2-с)(1,3)бензоксазин формулы I.2; 4,4-дифенил-11-изобутил-3,1-бензоксазино(1,3)бензоксазин формулы I. 3; 4,4-дифенил-15-нитро-3,1-бензоксазино(1,2-с)(1,3)бензоксазин формулы I.4; 4,4-дифенил-11-метил-15-нитро-3,1-бензоксазино(1,2-с)(1,3)бензоксазин формулы I.5; I.1. R, R1 - H; I.2. R - H, R1 - CH3; I.3. R - H, R1 - изоC4H9; I.4. R - NO2, R1 - H; I.5. R - NO2, R1 - CH3.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 01.06.2004

Извещение опубликовано: 10.03.2006        БИ: 07/2006





Популярные патенты:

2154940 Способ получения, содержания и хранения живого корма для биологических объектов птиц и рыб

... при температуре от -10 до +4 oC в течение 1-1,5 года. Крышки с куколками погружают на 3-4 часа в суспензию нематод, получая паразитированные особи. Паразитированных куколок можно хранить в условиях холодильника при 4-6oC в течение 6 месяцев. Получение куколок в качестве живого корма для рыб осуществляется указанным способом. С целью экологической безопасности крышки с куколками погружают на 3-4 часа в суспензию нематод, получая паразитированные особи. Паразитированных куколок можно хранить в условиях холодильника при 4-6oC в течение 6 месяцев. Пример 7 Наработка живого корма для и рыб на основе паразитированной белокрылки. Как корм для рыб используют паразитированных личинок ...


2262220 Способ возделывания кормовых культур в условиях астраханской области (варианты)

... 350...550 м3/га при 65...75% НВ, уборку первой или двух-, или трех-, или четырехкомпонентной смеси в составе кукурузы, мальвы, донника и сои осуществляют в последней декаде июня в стадии зеленой спелости семян сои, молочной спелости початков кукурузы и мальвы, а во второй декаде июля убирают или двух -, или трех -, или четырехкомпонентную смесь из набора подсолнечника, мальвы, сорго и сои при зеленой спелости бобов сои, конце цветения корзинок подсолнечника и молочной спелости семян сорго. MM4A - Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения ...


2479996 Экологический комплекс для аквакультуры и рекультивации морских вод

... животных-фильтраторов, отсутствует контроль над параметрами среды. Кроме того, животные-фильтраторы одновременно с извлечением из воды взвешенных микроскопических частиц пищи выделяют фекалии и псевдофекалии, которые накапливаются на дне под мидийными коллекторами. Взмучивание этого ила приводит к вторичному загрязнению воды. Известна установка для промышленного выращивания водных организмов (авт. свид. SU 1445661, кл. А01К 61/00) (5), содержащая понтоны, между которыми смонтирована платформа с рамами, на которых закреплены коллекторы с грузилами, плавучий элемент, на котором смонтированы аэратор, блок автоматического управления и бункер для кормовых добавок и химических ...


2053664 Медогонка

... привода, отстойного бака и устройства для спуска меда. Конструкция также металлоемка, не обеспечивает полного удаления меда, так как прямое удаление предусмотрено только с одной стороны рамки, в процессе извлечения меда его путь удлиненный, требует устройства для отстаивания меда. Кроме того, медогонка позволяет извлекать мед только из трех рамок одновременно. Медогонка недостаточно удобна в процессе эксплуатации к транспортировке из-за ее габаритов по высоте. Известны медогонки с хордиальным расположением на четыре или шесть кассет с рамками. Такие медогонки позволяют увеличить количество одновременно устанавливаемых для извлечения меда рамок с сотами, однако габариты ...


2263431 Устройство для предпосевной обработки семян

... 8 гидравлически связана нагнетательным трубопроводом 6 со смесительной камерой 1. Другая камера 10 пневматически сопряжена с источником сжатого воздуха 11 и гидравлически с всасывающим патрубком 4 смесительной камеры 1. Камеры 8 и 10 емкости сообщены между собой трубопроводом 12 через вентили 13 и 14.В упомянутой смесительной камере 1 соосно смонтированы приводные выгрузной шнек 15 в поворотном желобе 16 и ротор 17 с криволинейными лопастями 18. Лопасти 18 с равным угловым шагом размещены на ступице 19 ротора 17. Положением желоба 16 управляют рычагом 20, фиксируемым на раме смесительной камеры 1. В качестве привода выгрузного шнека 15 использован электродвигатель 21 и шкивы 22 ...


Еще из этого раздела:

2099929 Почвенная растительная смесь для культурных газонов и способ их создания

2274986 Способ посева семян трав и кустарников для создания пастбищ на опустыненных землях и почвообрабатывающее орудие для его осуществления

2114528 Устройство для клеточного содержания мелких животных

2423036 Биоконтейнер для посадки растений

2196403 Почвообрабатывающий модуль

2420058 Способ выращивания зеленных культур в интенсивной светокультуре

2192734 Устройство для производства прессованных кип из корней лекарственных растений

2452155 Лапа культиватора

2248352 Замещенные бензоилциклогександионы, гербицидное средство на их основе, исходное соединение

2216923 Способ выращивания льна-долгунца