Способ обработки биоматериалов для сердечно-сосудистой хирургииПатент на изобретение №: 2196424 Автор: Барбараш Л.С., Журавлева И.Ю., Борисов В.В., Климов И.А. Патентообладатель: Барбараш Леонид Семенович Дата публикации: 20 Января, 2003 Начало действия патента: 10 Мая, 2001 Адрес для переписки: 650002, г.Кемерово, Сосновый б-р, 6, Кемеровский кардиоцентр, отдел биотехнологий, В.В.Борисову ИзображенияИзобретение относится к медицине, а именно к предимплантационной обработке биологических протезов для сердечно-сосудистой хирургии. Биоматериал обрабатывают базовым раствором эпоксисоединений при рН 3,0-11,0 и при температуре 4-45oС в течение 2-21 сут., промывают, обрабатывают раствором хлоргексидина с концентрацией не менее 1% при рН 3,0-8,0 и температуре 15-45oС в течение 2-16 ч, а затем снова промывают и повторно обрабатывают базовым раствором. Повторную обработку базовым раствором осуществляют в течение 1-3 сут. , в качестве базового могут быть также использованы 2-5% раствор диглицидилового эфира этиленгликоля или 2-5% раствор смесей эпоксисоединений различного состава. Технический результат: способ позволяет предупредить бактериальную контаминацию биологической поверхности протеза и использовать модифицированные биопротезы в условиях локального или генерализованного инфекционного процесса. 3 з.п. ф-лы, 1 табл. ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к медицине, а именно к предимплантационной обработке биологических протезов для сердечно-сосудистой хирургии. Основными целями предимплантационной обработки изделий, контактирующих с кровью, являются повышение тромборезистентности с одновременным подавлением кальцификации и придание им антибактериальных свойств. В настоящее время разработки по приданию протезам антибактериальных свойств ведут, в основном, по двум направлениям: создание синтетических изделий с биодеградируемыми матрицами, в состав которых включены антибиотики, и обработка синтетической манжеты механических протезов солями металлов, например серебра. Такая обработка позволяет получить кратковременный эффект, т.к. антибактериальные свойства проявляются лишь при разрушении матрицы и выделении антибактериальных препаратов в кровоток, а соли металлов обладают лишь бактериостатическим эффектом и не в состоянии защитить поверхность от массивного инфицирования при сепсисе, инфекционных эндокардитах и др. Известно применение хлоргексидина для антибактериальной обработки операционного поля, стерилизации хирургического инструментария и др., а также при гнойно-септических процессах (Машковский М.Д. Лекарственные средства. Часть 2., М.: Медицина, 1985, с.411). Хлоргексидин обладает бактерицидным действием в отношении широкого спектра грамположительиых и грамотрицательных бактерий. Хлоргексидин использовали в эксперименте также для обработки кардиоваскулярных нмплантатов, изготовленных из синтетических материалов, при этом хлоргексидин заключали в полимерную матрицу. Основными недостатками известного способа антибактериальной обработки протезов с использованием хлоргексидина являются: - кратковременный эффект от обработки, который проявляется только при разрушении матрицы; - исследования проводили на кардиоваскулярных имплантатах только из синтетических материалов, и механизм прочного химического связывания хлоргексидина на поверхности биологического материала не разработан; - процессы обработки биопротезов с целью улучшения биомеханических свойств, повышения гемосовместимости и резистентности к кальцификации выполняются, как правило, па основе консервации глутаровым альдегидом. Иммобилизация биологически активных веществ выполняется последовательно, что приводит к формированию сложных "сэндвичевых" структур на поверхности и в объеме матрицы. Кроме того, в процессе обработки биологически активные вещества реагируют между собой. Все это делает непредсказуемым конечный эффект модификации. В последние годы в России и ряде других стран (Канада, США, Япония) ведутся работы по использованию эпоксисоединений при консервации ксенобиопротезов с целью обеспечения высокой плотности поперечной сшивки коллагеновой основы биопротеза и придания нмплантату ряда дополнительных свойств - в первую очередь, устойчивости к кальцификации. Известен способ обработки биоматериалов для сердечно-сосудистой хирургии, предусматривающий использование для этих целей эпоксисоединений, например, диглицидилового эфира этиленгликоля или эпоксидных смесей различного состава (например, патент РФ 2122321, МКИ 6А N 1/02, 1996). Способ заключается в том, что биоматериал помещают на 1-21 суток в 2-5% раствор эпоксидных соединений, приготовленный на буфере при рН 3.0-11,0 при температуре 4-45oС, затем промывают физиологическим раствором в течение 1 часа и обрабатывают раствором гепарина с концентрацией не менее 75 МЕ/мл при рН 3,0-8,0 и температуре 20-45oС в течение 2-16 часов и повторно промывают до отсутствия гепарина в промывных водах. На заключительной стадии биоматериал обрабатывают 70% водным раствором этанола в течение 40-60 минут с последующей отмывкой в физиологическом растворе и помещают для хранения в 2-5% раствор используемого эпоксисоединения. В результате обработки биоматериала по известному способу возникает более высокая плотность сшивки и возможность ее регулирования, при этом обеспечивается высокий антикальцифицирующий эффект. Недостатком известного способа обработки биологических протезов является невысокая эффективность в части придания им антибактериальных свойств. Предложен способ обработки биоматериалов для сердечно-сосудистой хирургии, включающий обработку их базовым раствором эпоксисоединений, например, 2-5% раствором диглицидилового эфира этиленгликоля или 2-5% раствором смесей эпоксисоединений различного состава при рН 3,0-11,0% и при температуре 4-45oС в течение 2-21 суток с последующей промывкой дистиллированной водой или физиологическим солевым раствором. Основным отличием предлагаемого способа является то, что после промывки биоматериал обрабатывают раствором хлоргексидина с концентрацией не менее 1% при рН 3,0-8,0 и температуре 15-45oС в течение 2-16 часов с последующей промывкой и повторной обработкой базовым раствором в течение 1-3 суток. Целью изобретения является предупреждение бактериальной контаминации биологической поверхности протезов, консервированных диглицидиловым эфиром этиленгликоля пли смесями этоксисоединений различного состава, а также возможность использования модифицированных биопротезов па фоне локального или генерализованного инфекционного процесса. Прочная химическая фиксация хлоргексидина на биоматериал достигается, с одной стороны, путем ионного связывания препарата с карбоксильными группами коллагеновой матрицы, с другой - путем взаимодействия иминогрупп хлоргексидина со свободными эпоксидными группами, несвязавшимися с коллагеном в процессе первичной обработки. Ниже приведено описание способа обработки биоматериалов для сердечно-сосудистой хирургии. Подготовленную по существующим методикам отбора нативную ткань помещают в базовый раствор, в качестве которого может быть использован 2-5% раствор диглицидилового эфира этиленгликоля или эпоксидных смесей различного состава, приготовленных на буфере при рН 3,0-11,0 при температуре 4-45oС. Диглицидиловый эфир этиленгликоля является диэпоксидным соединением, которое является одновременно сшивающим и стерилизующим агентом для биоткани протезов и обеспечивает ковалентную связь с биологически активными веществами. Смесь эпоксисоединений различного состава также является сшивающим и стерилизующим агентом. Смесь диэпоксисоединеиий и полиэпоксисоединений обеспечивает эффективное и большее по количеству связывание с такими веществами как хлоргексидин, гепарин и др. за счет непрореагировавших с биоматериалом эпоксигрупп. Концентрация базового раствора ниже 2% не обеспечивает стерильности материала в процессе обработки, а концентрация базового раствора более 5% нецелесообразна, т.к. в указанных пределах достигается полная сшивка. Первичную обработку базовым раствором ведут в течение 2-21 суток. После окончания первичной обработки осуществляют промывку биоматериала дистиллированной водой или физиологическим солевым раствором в течение 1 часа с, по меньшей мере, трехкратной сменой избытка дистиллированной воды или физиологического солевого раствора. Антибактериальную обработку ткани проводят раствором хлоргексидина с концентрацией не менее 1% при рН 3,0-8,0 и температуре 15-45oС в течение 2-16 часов. В процессе антибактериальной обработки происходит связывание хлоргексидина с непрореагировавшими с биоматериалом эпоксидными группами, а также с карбоксильными группами коллагеновой матрицы. При концентрации хлоргексидина в растворе менее 1% процесс обработки занимает длительное время и является малоэффективным, т.к. связывается небольшое количество хлоргексидина. По мере увеличения концентрации эффективность обработки возрастает. При антибактериальной обработке показатель рН должен находиться в пределах 3,0-8,0, т.к. за указанными пределами возможно выпадение хлоргексидина в осадок, что снижает эффективность обработки. Проведение обработки при температуре выше 45oС нецелесообразно, т.к. возникает возможность термического поражения тканей, а при температуре ниже 15oС интенсивность связывания со свободными эпоксигруппами резко снижается. Длительность обработки зависит от концентрации раствора, величины показателя рН и температуры. При длительности обработки менее 2 часов эффективность снижается вследствие того, что в химическую реакцию вступает малое количество хлоргексидина или произойдет насыщение только тонкого наружного слоя материала, а диффузия препарата в объем биологической матрицы и химическое взаимодействие его с коллагеном не произойдут. После антибактериальной обработки проводят промывку биоматериала дистиллированной водой до отсутствия хлоргексидина в промывных водах, а затем производят повторную обработку базовым раствором эпоксисоединений в течение 1-3 суток. Целью повторной обработки базовым раствором является стерилизация биопротезов. Таким образом, в результате обработки возникает более высокая плотность сшивки и возможность ее регулирования, а также возможность регулирования биомеханических свойств структуры поверхности и придание материалу заданных биологических свойств (в частности, антибактериальных). С целью определения эффективности антибактериальной обработки по предложенному способу были изготовлены образцы биоматериалов и проведены лабораторные испытания, результаты которых приведены в таблице. В процессе испытаний были использованы базовые растворы на основе диглицидилового эфира этиленгликоля (ДЭЭ) и разных смесей эпоксисоединений различного состава (ВК-1 и ВК-2). Эпоксидные смеси, получившие условное обозначение ВК-1 и ВК-2, были синтезированы в Институте органической химии СО РАН (г.Новосибирск). Результаты испытаний показывают, что образцы биоматериалов, обработанные только базовыми растворами по прототипу (поз. 1-3), имеют низкие антибактериальные свойства - диаметры зон подавления роста равны нулю, а количество колониеобразующих клеток, адгезированных на биоматериале после контакта с инфицированной кровью, достигает 26,9-47,5% по отношению к общему количеству колониеобразующих клеток в крови. В результате обработки по предложенному способу образцы биоматериала связывают до 380 мкт/мг хлоргексидина, что существенно повышает их антибактериальные свойства: диаметр зон подавления увеличивается до 10-12 мм, а количество колониеобразующих клеток, адгезированных на биоматериале после контакта с инфицированной кровью, снижается до 1-2%. Испытания показывают, что способ позволяет предупредить бактериальную контаминацию биологической поверхности протеза и использовать модифицированные биопротезы в условиях локального или генерализованного инфекционного процесса.ФОРМУЛА ИЗОБРЕТЕНИЯ1. Способ обработки биоматериала для сердечно-сосудистой хирургии, включающий обработку их базовым раствором эпоксисоединений при рН 3,0-11,0 и при температуре 4-45oС в течение 2-21 суток с последующей промывкой, отличающийся тем, что после промывки биоматериалы обрабатывают раствором хлоргексидина с концентрацией не менее 1% при рН 3,0-8,0 и температуре 15-45oС в течение 2-16 ч, а затем снова промывают и повторно обрабатывают базовым раствором. 2. Способ по п. 1, отличающийся тем, что повторную обработку базовым раствором осуществляют в течение 1-3 суток. 3. Способ по п. 1, отличающийся тем, что в качестве базового используют 2-5% раствор диглицидилового эфира этиленгликоля. 4. Способ по п. 1, отличающийся тем, что в качестве базового используют 2-5% раствор смесей эпоксисоединений различного состава.Популярные патенты: 2206985 Упряжь для собак ... сдавливание рабочих мышц (плечевые, нагрудные и т.д.). Наличие синтетической вставки между слоями спинного элемента сохраняет прочность этого элемента при прикладывании нагрузки. Ездовая шлейка обладает теми же преимуществами, что и прогулочная шлейка. Для использования данной шлейки как тренировочной в ней согласно изобретению дополнительно предусматривают карманы для грузов, которые жестко закреплены на подпруге, плечевых и нагрудном элементах и которые размещены равномерно и пропорционально по всей площади шлейки, при этом количество карманов, которые подлежат заполнению грузами, регулируется в зависимости от того, какие группы мышц подлежат развитию, а сама упряжь ... 2192734 Устройство для производства прессованных кип из корней лекарственных растений ... к паре направляющих 2 и 3. Нижняя матрица 5 шарнирно соединена с нижней траверсой 1. Шарнирное соединение матрицы 5 с траверсой 1 обеспечивают подвижный кронштейн 28 продольной балки 12 и пара разнесенных неподвижных кронштейнов 29, связанных осью 30 (см. фиг.1 и 3). Нижняя матрица 5 снабжена механизмом наклона. Механизм наклона выполнен в виде сопряженного с нижней гранью матрицы 5 подвижного упора 31, соединенного посредством оси 32 с рычагом 33 привода. Ось 32 смонтирована в паре соосных втулок 34 поперечных брусьев 13 нижней траверсы 1. Упор 31 установлен в прорези 35 плиты 14 траверсы 1. Рычаг 33 привода смонтирован на консольной части оси 32 и зафиксирован на ней крепежными ... 2310308 Способ определения выполненности семян сельскохозяйственных культур и устройство для его осуществления ... [3] с использованием коэффициента . Периметр поперечного сечения щуплого зерна всегда больше периметра выполненного при равной с ним площади. На основании этого коэффициент выполненности семян выражается отношением периметра поперечного сечения зерна к периметру окружности равной площади. При этом, с целью нахождения коэффициента индивидуального зерна, поперечный разрез последнего увеличивают в 30...40 раз, с помощью микроскопа и рисовального прибора. Затем измеряют площадь Sз и периметр Р з поперечного сечения зерна. Для этих целей используют планиметр и курвиметр. Принимая, что площадь S окр некоторой окружности, с диаметром d окр, равна площади Sз поперечного сечения ... 2437864 Способ микробиологической переработки птичьего помета ... водой в соотношении 1:2, в количестве 400 л, 7 декабря 2009 г. В течение испытаний проводился контроль температуры и влажности буртов, биологической составляющей, проводился физико-химический анализ исходного помета, и потом - физико-химический анализ конечного продукта. Контроль биологической составляющей проводился один раз в неделю. Отмечали, что происходит с пометом, как уменьшается патогенная микрофлора и увеличивается полезная микрофлора. Также велось визуальное наблюдение за внешним видом птичьего помета. В ходе испытаний наблюдалось постепенное изменение цвета и агрегатного состояния содержимого буртов и снижение аммиачного запаха. Отбор проб осуществляли в первый день ... 2406295 Способ экологического мониторинга лесов ... изображения 0, соответственно FcpR, F cp0, а степень ослабленности Q древостоя участка площадью So, определяют по калиброванной эталонной регрессионной зависимости вида:Q 0,6(NDVIg)-1[r(1-NDVI)1/3 (ПR/П0)(DR /D0)1/2, где ПR, П0 - расчетная полнота древостоев, вычисляемая через площади рельефов соответствующих матриц ПR=SрR/S0 , П0=Sp0/S0 ;DR, D0 - диаметры крон среднего дерева, равного соответственно D R=1/FcpR, D0 =1/Fcp0. PD4A Изменение наименования, фамилии, имени, отчества патентообладателя (73) Патентообладатель(и): федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт аэрокосмического мониторинга «АЭРОКОСМОС» ... |
Еще из этого раздела: 2043709 Система управления работой форсунки разбрызгивателя 2178965 Картофелекопатель ручной мотыжный 2245614 Устройство для очистки вороха в зерноуборочном комбайне 2195102 Устройство для отделения грунта и земли от корней и корневищ солодки в качестве лакричного сырья 2078495 Устройство для транспортирования кормов в хранилищах башенного типа 2193304 Захват лесозаготовительной машины 2239993 Устройство для комбинированного охлаждения сельскохозяйственной продукции естественным и искусственным холодом 2253964 Способ отделения семенной части урожая льна от стеблей и устройство для его осуществления 2496298 Узел крепления пальцев подборщика 2495556 Секционный отсекатель дозатора и сельскохозяйственный агрегат, содержащий его |