Способ получения растений с комплексной устойчивостью к фитостеринзависимым вредителямПатент на изобретение №: 2141196 Автор: Инге-Вечтомов С.Г., Лутова Л.А., Усольцева М.Ю., Ходжайова Л.Т., Бондаренко Л.В. Патентообладатель: Санкт-Петербургский государственный университет Дата публикации: 20 Ноября, 1999 Начало действия патента: 4 Июля, 1996 Адрес для переписки: 199034, Санкт-Петербург, Университетская наб., 7/9, Санкт- Петербургский государственный университет, Межв.патентно- лицензионный отдел Изображения![]() ![]() ![]() ![]() Изобретение относится к сельскому хозяйству и экологии, в частности к растениеводству и охране окружающей среды, и может быть использовано при производстве экологически чистых растений, подавляющих численность вредителей сельского хозяйства, зависящих в своем развитии от стеринов растений, например растений семейства пасленовых (картофель, томаты и др.), от фитофторы и колорадского жука. В ходе клеточной селекции на фоне селективных агентов проводят отбор растений с направленным изменением в спектре фитостеринов. Полученные таким образом растения обладают комплексной устойчивостью к большой группе фитостеринзависимых вредителей (насекомые, грибы, нематоды) и являются экологически чистым, т. к. не требуют для своего выращивания пестицидов. Данное изобретение по получению растений с комплексной устойчивостью к фитостеринзависимым вредителям является экономически выгодным, т.к. позволяет сократить время селекции с 5-8 лет до одного года и также не требует использования дорогостоящих ядохимикатов. 1 з.п.ф-лы, 8 табл. , , , , , , , , ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к области сельского хозяйства и экологии, в частности, к растениеводству и охране окружающей среды и может быть использовано при производстве экологически чистых растений, подавляющих численность вредителей сельского хозяйства, зависящих в своем развитии от стеринов растений, например, фитофторы, насекомых и нематод. Известен способ получения устойчивых к вредителям сельского хозяйства растений (1), основанный на методах генной инженерии, где в растения встраивают чужеродный ген, например ген Bt, который контролирует синтез белка-токсина, уничтожающего личинки насекомых или ген, контролирующий синтез защитных белков, что позволяет получать устойчивые трансгенные растения. К недостаткам этого метода относится то, что при встраивании в растения чужеродного гена изменяется экспрессия собственных генов растения, что приводит к нарушению свойств растения, в том числе и тех, которые связаны с урожайностью. Кроме того, введенный ген очень часто утрачивает свои свойства, перестает экспрессироваться, что сводит на нет физические и экономические затраты, связанные с получением трансгенных растений. Известен также способ получения устойчивых к вредителям сельского хозяйства растений, основанный на явлении сомаклональной изменчивости (2), когда проводят скрининг на устойчивость среди множества растений-регенерантов, полученных из клеточных или тканевых культур. Такой подход позволяет значительно сократить время селекции. К недостаткам этого метода относится то, что отбор проводят не направленно, без специально подобранных селективных условий, и поэтому вероятность отбора растений, устойчивых к вредителям очень низкая и требует анализа большого числа растений-регенерантов. Кроме того, отбирают растения устойчивые только к определенному патогену, а не к целой группе вредителей сельского хозяйства. Наиболее близким аналогом, выбранным в качестве прототипа (3), является способ, основанный на клеточной селекции, когда отбор устойчивых к насекомым растений осуществляется на фоне селективного агента, дающего возможность отбирать растения, у которых изменен спектр фитостеринов, необходимых насекомым для прохождения полного цикла развития. В качестве селективного агента используют полиеновый антибиотик нистатин, который является неспецифическим селективным агентом, на его фоне можно отбирать любые изменения, связанные с проницаемостью клеточной мембраны, в том числе возможен отбор клеток, а затем растений-регенерантов с измененным спектром фитостеринов, в силу чего такие растения не могут являться полноценным кормом для насекомых, что и приводит к снижению их численности. Недостатком этого способа является то, что применяемый селективный агент характеризуется широким спектром действия, что снижает, а иногда и сводит к нулю вероятность получения растений с направленно-измененным составом стеринов и нормальной морфологией. Кроме того, использование ультрафиолетового излучения, как мутагена, и отбор растений-регенерантов из устойчивых к селективному агенту клеточных культур на фоне нистатина, приводит к появлению очень большого числа аномальных растений, которые не пригодны для их использования в сельском хозяйстве. Задачей, решаемой данным изобретением является создание способа получения высших растений с комплексной устойчивостью ко всей группе фитостеринзависимых вредителей сельского хозяйства. Этот способ позволяет на основе специально подобранных селективных агентов и без использования мутагена, отбирать только те растения, у которых направленно изменен состав фитостеринов и не изменены признаки, влияющие на продуктивность растений. Такие растения характеризуются не только комплексной устойчивостью к фитостеринзависимым вредителям, но являются и экологически чистыми, так как при их выращивании не требуется использования ядохимикатов (пестицидов). К фитостеринзависимым вредителям относятся многие виды насекомых (например, колорадский жук), патогенные грибы (например, фитофтора) и нематоды, то есть большая разнородная группа вредителей, требующая для своего уничтожения разнообразных пестицидов, которые наносят огромный вред окружающей среде, являясь высокотоксичными для всех млекопитающих, в том числе и для человеке, а кроме того, их производство является трудоемким и дорогостоящим. Данное изобретение, основанное на клеточной селекции, позволяет не только получать растения с комплексной устойчивостью ко всем перечисленным вредителям и не требует внесения дорогих ядохимикатов, но также позволяет значительно сократить время селекции (до одного года), в отличие от общепринятой традиционной селекции, которая занимает от 5 до 8 лет, а также позволяет получать сразу необходимое число растений для воспроизводства посадочного материала. Этот результат достигается тем, что получение растений с комплексной устойчивостью к фитостеринзависимым вредителям, основанное на клеточной селекции и отличающееся тем, что селекцию проводят на уровне микрокаллусов, получаемых из протопластов известным методом (4), которые выращивают на первичной питательной среде, содержащей агар, макро и микросоли, сахарозу, добавки фитогормонов ауксина и цитокинина при температуре и длине светового дня, соответствующим активному делению клеток до формирования микрокаллуса, после чего микрокаллусы помещают в питательную среду с агентом, селектирующим клетки с измененным составом фитостеринов и подавляющим рост клеток дикого типа и культивируют устойчивые микрокаллусы до образования каллусов, затем каллусы помещают на вторичную питательную среду с составом, сходным с первичной средой с добавкой фитогормонов цитокинина, ауксина и гиббереллина при отсутствии селективного агента при температуре и длине светового дня, соответствующим активному делению клеток и получают растения- регенеранты, определяя у них состав фитостеринов, затем из выращенных растений-регенерантов отбирают экземпляры, у которых по сравнению с диким типом изменен состав фитостеринов, после чего на отобранные растения-регенеранты наносят суспензию, содержащую смесь агрессивных штаммов фитостеринзависимых грибов и отбирают не пораженные грибом экземпляры растений, устойчивые к фитостеринзависимым грибам, после чего полученные растения, устойчивые к фитостеринзависимым грибам используют в качестве единственного источника стеринов в диете фитостеринзависимых насекомых и контролируют плодовитость и репродуктивную систему этих насекомых, затем окончательно отбирают экземпляры растений, которые одновременно устойчивы к грибам и подавляют плодовитость и репродуктивную систему насекомых, формируя из них экземпляры растения с комплексной устойчивостью к фитостеринзависимым вредителям. В частных конкретных случаях реализацию способа осуществляют получением растений с комплексной устойчивостью к фитостеринзависимым вредителям, при котором протопласты выращивают при температуре окружающей среды в пределах от 20 до 28oC на свету, при длине светового дня не менее 10 часов в течение времени, необходимого для достижения размера микрокаллуса, содержащего не более 80-100 клеток, с последующим их культивированием на среде с селективным агентом в виде полиенового антибиотика филипина или ингибитора биосинтеза стеринов, например, байтана в течение времени, необходимого для селекции устойчивых к селективному агенту микрокаллусов при температуре окружающей среды в пределах от 20 до 28oC на свету, при длине светового дня не менее 10 часов, причем суспензию наносят на полученные из устойчивого каллуса растения-регенеранты в виде смеси, содержащей набор агрессивных штаммов фитофторы, а стеринсодержащая диета из этих растений используется для дрозофилы. Примеры конкретного выполнения Растительный материал. Использовали сорта и различные формы картофеля Solanum tuberosum L.: сорта, растения-регенеранты сорта Невский (НСР), сорта Пушкинец (П-1, П-2), дигаплоид ДГ 30 (сорт Кози-ма) и дикий вид Solanum nigrum L., а также сорта томатов Утро, Таллалихин, Алпатьева, Бизон. Методы исследований. Получение микрокаллусов, каллусов и растений-регенерантов. Протопласты получали и культивировали до стадии формирования небольших агрегатов по стандартной методике (4). Видимые невооруженным взглядом агрегаты переносили на среду Мурасиге и Скуга (МС) с ауксином и цитокинином и культивировали при температуре 24-28oC на свету до размера микрокаллуса, содержащего 80-100 клеток. Для получения каллусных культур использовали микрокаллусы, размером не более 100 клеток, которые помещали на среду МС с ауксином и цитокинином и культивировали применительно к этим формам при температуре 24-28oC более 10 дней. Для индукции побегообразования и получения растений-регенерантов каллусы помещали на среду с ауксином, цитокинином, а для картофеля и с гиббереллином. Чашки помещали под светоустановку с лампами дневного света при фотопериоде 16 ч/сут и температуре 26oC. Получение растений-регенерантов, устойчивых к байтану и филипину. В ходе осуществления способа необходим выбор сублетальной концентрации селективного агента, ингибирующей рост клеточных культур. Использовали такие селективные агенты, как филипин и ингибитор биосинтеза стеринов - байтан. Испытывали серию концентраций селективных агентов, которые значительно влияли на жизнеспособность растительных тканей. Для селекции на фоне селективного агента использовали формы с интенсивной регенерацией и сублетальные концентрации байтана и филипина. Устойчивые к селективным агентам клеточные культуры переносили на среду для регенерации без селективного агента для индукции побегообразования. Регенерирующие побеги были повторно перенесены на среду с байтаном. Подросшие устойчивые побеги укореняли и каждая форма поддерживалась индивидуально. Анализ фитостеринов. Лиофилизированные ткани растений гомогенизировали с помощью ультрагомогенизатора в растворе метилен-хлорид-метанол. Тотальную фракцию липидов выделяли тремя последовательными экстракциями тем же растворителем. Все липидные производные сапонифицировали раствором щелочи в метаноле. Фракцию свободных стеринов экстрагировали гексаном и очищали фильтрованием через сульфат натрия. Производные стеринов анализировали методом ГЖХ на хроматографе. Различные формы стеринов идентифицировали методом масс-спектрометрического анализа. Оценка устойчивости растений картофеля к Phytophtora infestans. Для оценки устойчивости растений к фитофторозу in vitro использовалась раса Phytophtora infestans с 14 генами вирулентности - 1.2.3.4.5.6.7.8.9.10.11.X. Y. Z, выделенная из Сахалинской популяции гриба. Для повышения агрессивности культуру пассировали на пробирочных растениях восприимчивого сорта. Пример 1. Получение растений-регенерантов картофеля, устойчивых к байтану Получение растений-регенерантов с измененным составом стеринов из устойчивых к селективному агенту каллусов осуществляли следующим образом. Предварительно подбирали сублетальную концентрацию байтана для микрокаллусов картофеля. Установлено, что помимо фитотоксического эффекта байтан обладает свойством подавлять процессы роста тканей и регенерации. В контроле регенерацию наблюдали уже через месяц (табл.1). На среде с байтаном выживало незначительное количество каллусов, у которых на этой среде регенерация была подавлена полностью. Поэтому для получения регенерантов переносили устойчивые каллусы на среду для регенерации с повышенной концентрацией гиббереллина и не содержащей байтана, что позволило получить растения-регенеранты. Их устойчивость была подтверждена при повторном переносе регенерирующего каллуса на среду с байтаном - образовавшиеся в неселективных условиях побеги продолжали расти. На стандартной среде МС для черенкования побеги укореняли. Морфологически большинство растений-регенерантов не отличалось от контрольных растений. Таким образом, на среде с сублетальной концентрацией байтана получено 50 растений, которые в дальнейшем были проанализированы на устойчивость к фитофторе и фитостеринзависимым насекомым. Пример 2. Получение растений-регенерантов, устойчивых к филипину По той же схеме регенерации из устойчивых к филипину каллусов получали растения-регенеранты картофеля. Филипин является одним из самых цитотоксичных полиеновых антибиотиков и связывается с мембранными стеринами, что приводит к деформации и разрушению мембраны и гибели клетки. Поэтому ткани и клетки, устойчивые к нему, должны иметь в мембранах другие стерины, с которыми филипин не взаимодействует и обладать измененным биосинтезом стеринов. На среде с филипином выживало только 36,2% каллусов при 100% и 80% в контролях KI и KI+ДМСО (табл. 2). Филипин также практически полностью подавляет процесс регенерации по сравнению с контролем. Поэтому для получения регенерантов, устойчивые экспланты переносили на среду без селективного агента. Сроки регенерации во всех вариантах остались неизменными - более одного месяца. Также не было отмечено морфологических отличий устойчивых регенерантов от контрольных растений-регенерантов. Регенерировавшие побеги были высажены на стандартную среду для черенкования. Растения были проверены на устойчивость к фитофторе, а также в модельной системе "растение-дрозофила". Пример 3. Оценка устойчивости к фитофторе in vitro растений-регенерантов картофеля Известно, что Phytophtora infestans зависит в своем развитии от растительных стеринов, в частности, от![]() ![]() ![]() ![]() ![]() ![]() ФОРМУЛА ИЗОБРЕТЕНИЯ1. Способ получения растений с комплексной устойчивостью к фитостеринзависимым вредителям, основанный на клеточной селекции, включающей получение каллусов, выращивание их на первичной питательной среде, содержащей агар, макро- и микросоли, сахарозу, добавки фитогормонов ауксина и цитокинина при температуре и длине светового дня, соответствующим активному делению клеток до формирования рыхлого каллуса, разделение его на микрокаллусы, отличающийся тем, что микрокаллусы помещают в питательную среду с агентом, селектирующим клетки с измененным составом фитостеринов и подавляющим рост клеток дикого типа, и культивируют устойчивые микрокаллусы до образования каллусов, затем каллусы помещают на вторичную питательную среду с составом, одинаковым с первичной добавкой фитогормонов при отсутствии селективного агента, выращивают при температуре и длине светового дня, соответствующим активному делению клеток, и получают растения-регенеранты, определяя у них состав фитостеринов, затем из выращенных растений-регенерантов отбирают экземпляры, у которых по сравнению с диким типом изменен состав фитостеринов, после чего на отобранные растения-регенеранты наносят суспензию, содержащую смесь агрессивных штаммов фитостеринзависимых грибков, и отбирают непораженные грибом экземпляры растений, устойчивые к фитостеринзависимым грибам, после чего полученные растения, устойчивые к фитостеринзависимым грибам, используют в качестве единственного источника стеринов в диете фитостеринзависимых насекомых и контролируют плодовитость и репродуктивную систему этих насекомых, затем окончательно отбирают экземпляры растений, которые одновременно устойчивы к грибам, и подавляют плодовитость и репродуктивную систему насекомых, формируя из них экземпляры растений с комплексной устойчивостью к фитостеринзависимым вредителям. 2. Способ получения растений с комплексной устойчивостью к фитостеринзависимым вредителям, основанный на клеточной селекции по п.1, отличающийся тем, что микрокаллусы, содержащие не более 80 - 100 клеток, выращивают при температуре окружающей среды в пределах от 18 до 28oC на искусственном свету, при длине светового дня не менее 10 ч на среде с селективным агентом в виде полиенового антибиотика филипина или ингибитора биосинтеза стеринов, например байтана, в течение времени, необходимого для селекции устойчивых к селективному агенту микрокаллусов, затем каллусы помещают на вторичную питательную среду с составом, одинаковым с первичной средой с добавкой фитогормонов при отсутствии селективного агента, и выращивают при температуре окружающей среды в пределах от 18 до 28oC на искусственном свету, при длине светового дня не менее 10 ч до получения растений-регенерантов, причем суспензию наносят на растения-регенеранты, полученные на основе микрокаллусов в виде смеси, содержащей набор агрессивных штаммов фитофторы, а стеринсодержащая диета из этих растений используется для дрозофилы и/или колорадского жука.Популярные патенты: 2384048 Способ испытания травяного покрова на пойме малой реки ... II пробных площадок 7 12; на фиг.5 - то же на фиг.3 по створу III пробных площадок 13 18; на фиг.6 приведена карта-схема первого створа внутри границ водозащитной полосы реки Ировка в верхней части запруды; на фиг.7 - карта-схема второго створа внутри границ водозащитной полосы около излучины реки; на фиг.8 - карта-схема третьего створа внутри границ водозащитной полосы после запрудной плотины; на фиг.9 показан вид сверху на расположение пробных площадок 1 6 вдоль первого гидрометрического створа относительно линий поверхности воды примерно в летнюю межень; на фиг.10 - то же на фиг.9, вид сверху на расположение пробных площадок 7 12 вдоль второго створа; на фиг.11 - то же на ... 2054429 Способ получения антисептика для защиты древесины ... в том числе и термитам, и могут найти применение как эффективные антисептики для защиты древесины и целлюлозы. Кроме того, борные эфиры многоатомных спиртов используются в качестве компонентов тормозных и смазочно-охлаждающих жидкостей биоцидных добавок к маслам и топливам, исходных веществ для синтеза других полезных продуктов. Борные эфиры многоатомных спиртов обладают целым комплексом ценных технических свойств (высокая термостойкость, достаточно высокая вязкость, прозрачность, наличие биоцидной и отсутствие коррозионной активности и т.д.). Однако широкому использованию этих соединений на практике препятствует их низкая гидролитическая стойкость. Абсолютное большинство эфиров при ... 2105446 Плоскорежущая лапа ... плоскорежущей лапы 2 с задней стенкой 5 дополнительно соединены болтом 13 с потайной головкой, пружинной шайбой 14 и гайкой 15. Болт 13 с потайной головкой размещен в створе стойки 1 и в соосных вертикальных отверстиях плоскорежущей лапы 2 и задней стенки 6. Задняя стенка 6 по ее длине выполнена переменного сечения и сопряжена с нижней частью 3 стойки 1. Стрельчатая плоскорежущая лапа 2 выполнена из листовой стали толщиной 3.6 мм. Угол раствора стрельчатой лапы 2 составляет 1202o. Угол заточки лапы 2 i 153o, что образует режущие кромки 16 и 17. Лезвия 18 и 19 лапы 2 напылены износостойким материалом с толщиной покрытия 0,7.0,8 мм. Материал лапы 2 сталь 65Г ГОСТ 1050-74. ... 2245013 Устройство для обмолота легкоповрежденных культур на примере нута (варианты) ... 9 нижнего обмолачивающего вальца 4.Многократными изгибно-растягивающими нагрузками, создаваемые выступами 9 и впадинами 8 рабочего элемента 7 обечайки нижнего вальца 4 и рабочими элементами 15 деки 10, зерна выделяются из створок бобов и перемещаются гибкой бесконечной лентой в зазор между декой 10 и нижним обрезиненным вальцом 2. Ворох перетирается и далее под собственным весом падает на переднюю часть транспортной деки. За счет вибрации и далее напора воздушного потока на решетах происходит отделение зерен от сбоины, створок и бобов нута. Очищенное зерно направляется в бункер. Обмолоченное таким образом зерно нута не имеет практически повреждения семенной оболочки и зародыша ... 2185064 Вещество, обладающее пестицидной активностью, способ его получения, пестицидная композиция и способ контролирования вредителей ... длинноцепочечной жирной кислоты; N-ацилсаркозинат; моно или диэфиры фосфорной кислоты с этоксилатами спиртов жирного ряда или соли этих эфиров; сульфаты спиртов жирного ряда, такие как додецилсульфат натрия, октадецилсульфат натрия или цетилсульфат натрия; этоксилированные сульфаты спиртов жирного ряда; этоксилированные алкилфенольные сульфаты; сульфаты лигнина; нефтяные сульфонаты; алкиларилсульфонаты, такие как алкилбензолсульфонаты, или низшие алкилнафталинсульфонаты, например, бутилнафталинсульфонат; соли сульфонированных нафталинформальдегидовых конденсатов; соли сульфонированных фенолформальдегидовых конденсатов или более сложные сульфонаты, такие как амидные ... |
Еще из этого раздела: 2144756 Селекционная сеялка для посева семян в кассеты 2264082 Способ восстановления полей бурой водоросли ламинарии 2161391 Комбинированная почвообрабатывающая посевная машина 2260943 Способ подращивания личинок осетровых рыб 2415570 Искусственное роение и борьба с естественным роением пчелиных семей 2384038 Устройство для посадки сеянцев, выращенных в контейнерах 2239993 Устройство для комбинированного охлаждения сельскохозяйственной продукции естественным и искусственным холодом 2083070 Способ предпосевной обработки семян и устройство для его осуществления 2473366 Вещество, обладающее антимикробным действием 2403708 Устройство для полива сельхозрастений |