Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ предпосевной обработки семян и устройство для его осуществления

 
Международная патентная классификация:       A01C

Патент на изобретение №:      2083070

Автор:      Кадменский Станислав Георгиевич, Левин Марк Николаевич, Лукина Екатерина Алексеевна, Масловский Владимир Михайлович, Суровцев Игорь Степанович

Патентообладатель:      Кадменский Станислав Георгиевич, Левин Марк Николаевич, Лукина Екатерина Алексеевна, Масловский Владимир Михайлович, Суровцев Игорь Степанович

Дата публикации:      10 Июля, 1997

Адрес для переписки:      подача заявки07.09.1993 публикация патента10.07.1997


Изображения





Использование: изобретение относится к сельскому хозяйству, а именно к предспосевной обработке семян сельскохозяйственных культур для повышения всхожести и увеличения урожайности. Сущность изобретения: способ заключается в обслуживании семян серией от 400 до 1000 импульсов магнитного поля длительностью 10 - 40 мкс и амплитудой напряженности 70 - 150 кА/м. Устройство состоит из формирователя импульсов электрического тока и излучателя магнитного поля. Формирователь содержит блок питания, конденсаторный накопитель электрической энергии, ключевой блок и блок управления ключевым устройством. Блок питания соединен с конденсаторным накопителем и блоком управления ключевым блоком, который подключен к управляющему входу ключевого блока, а конденсаторный накопитель и последовательно соединенный с ним ключевой блок подключены на выходе формирователя к излучателю магнитного поля, выполненному в виде соленоида. На вход формирователя подается переменное напряжение промышленной сети 220 В, 50 Гц. В течение положительного полупериода ключевой блок закрыт и происходит заряд кондернсаторного накопителя через блок питания. В отрицательный полупериод блок управления открывает ключевой блок и происходит разряд конденсаторного накопителя на соленоид, что создает импульс магнитного поля в излучателе. 2 с. п. ф-лы. 2 ил., 3 табл. , ,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к сельскому хозяйству, а именно к предпосевной обработке семян сельскохозяйственных культур, и может быть использовано для обработки семян в магнитном поле.

Известен способ предпосевной обработки семян в магнитном поле 1,5 5 Э, частотой 2 20 кГц, при длительности обработки 5 10 мин. Устройство для реализации этого способа представляет собой излучатель магнитного поля, выполненный в виде катушки индуктивности, входящей в колебательный контур, подключенный в звуковому генератору.

Наиболее близким по совокупности признаков является способ обработки семян импульсивным магнитным полем (ИМЦ) с "трапецеидальным" импульсами длительностью 8 Способ предпосевной обработки семян и устройство для его осуществления, патент № 2083070 10-3- 1 с и длительностью фронтов 6 Способ предпосевной обработки семян и устройство для его осуществления, патент № 2083070 10-6 8 Способ предпосевной обработки семян и устройство для его осуществления, патент № 2083070 10-5 с. Наиболее близким является устройство, реализующее вышеуказанный способ. Оно содержит формирователь импульсов электрического тока и излучатель магнитного поля, причем формирователь состоит из блока питания, преобразователь тока в виде ключа-формирователя и блока управления, а излучатель в виде плоского токопровода синусоидной формы.

Недостаток такого способа, в котором ИМП создается пропусканием тока через плоский токопровод синусоидной формы, обусловлен необходимостью использования больших токов (до 1000 А) для создания необходимых амплитуд ИМП и, соответственно, большой расход электроэнергии, так как длительность импульсов достаточно велика (до 1 с).

Изобретение предназначено для повышения качества обработки семян, а именно увеличения энергии прорастания и всхожести, повышения урожайности, а также снижения энергозатрат при обработке.

Указанная задача решается тем, что в известном способе предпосевной обработки семян, включающем обработку семян ИМП, согласно изобретению обработку ведут магнитным полем с амплитудной напряженностью магнитного поля 70 150 кА/м, длительностью импульсов 10 40 мкс и их числом от 400 до 1000.

Известное устройство не позволяет реализовать предложенный способ, так как не обеспечивает получение требуемых в предложенном способе характеристик импульсов магнитного поля. Так длительность импульсов, реализуемых в устройстве-прототипе велика (8 Способ предпосевной обработки семян и устройство для его осуществления, патент № 2083070 10-3 1,0 с) по сравнению с требуемой, а для достижения амплитуды напряженности магнитного поля порядка 100 кА/м требуется пропускать через плоский токопровод значительные токи (до 1000 А), что приводит к большому расходу электроэнергии.

В известном устройстве, содержащем формирователь импульсов электрического тока и излучатель магнитного поля, согласно изобретению формирователь содержит блок питания, конденсаторный накопитель электрической энергии, ключевое устройство и блок управления ключевым устройством, а излучатель магнитного поля выполнен в виде соленоида.

В известном способе предпосевной обработки семян ИМП согласно изобретению на семена сельскохозяйственных культур воздействуют серией импульсов магнитного поля с амплитудой напряженности 70 150 кА/м, длительностью импульсов 10 40 мкс и количеством импульсов 400 1000.

Получаемый при использовании изобретения результат, а именно повышение урожайности, достигается за счет того, что действие импульсов магнитного поля в указанных диапазонах приводит к ответной реакции растительной клетки - смещению изоэлектрической точки (ИЭТ) в щелочную или кислотную сторону. Сдвиг ИЭТ в области более кислых значений расценивается физиологами как показатель интенсификации клеточного метаболизма. Наблюдается увеличение проницаемости биомембран, что приводит к большому притоку и кислороду, необходимых для прорастания семян и развития растений.

Установленные эмпирическим путем диапазоны параметром ИМП и выполнение излучателя магнитного поля в виде соленоида, а формирователя импульсов электрического тока состоящим из блока питания, конденсаторного накопителя электрической энергии, ключевого устройства и блока управления ключевым устройством, позволяет уменьшить расход электроэнергии при увеличении эффективности обработки семян.

На фиг. 1 изображена блок-схема устройства для реализации способа; на фиг. 2 принципиальная схема формирователя импульсов электрического тока.

Устройство для осуществления способа состоит из формирователя 1 импульсов электрического тока и излучателя 2 магнитного поля, выполненного в виде соленоида. Формирователь 1 включает в себя блок питания 3, выходы которого подключены к конденсаторному накопителю 4 электрической энергии и блок управления 5 ключевым устройством 6, а выход блока управления 5 подключен к управляющему входу ключевого устройства 6. Последовательно соединенные конденсаторный накопитель 4 и ключевое устройство 6 на выходе формирователя 1 подключены к излучателю 2.

Пример выполнения устройства. Устройство работает следующим образом. На вход формирователя подается переменное напряжение, например от промышленной сети 220 В, 50 Гц. В течение положительного полупериода происходит зарядка емкости C1 и C2 через диоды Д1 и Д2, соответственно, а через цепь R1, Д3, Д4 зарядка емкости C3. Время зарядки емкости C3 задается резистором R1, величина которого выбирается так, чтобы обеспечить полный заряд емкости в течение положительного полупериода. Транзистор T1 в течение положительного полупериода заперт прямым смещением на диоде Д4. В отрицательный полупериод диод Д3 закрыт, что обеспечивает открывание транзистора T1 базовым током за счет возникновения отрицательного смещения на базе p-n-p транзистора относительно эмиттера. Открытие Т1 проводит к разряду к разряду емкости C3 через цепь открытого транзистора T1, светодиода оптического тиристора ТО и резистора R3, ограничивающего ток в цепи разряда. Разряд конденсатора C3 через светодиод обеспечивает световой импульс, открывающий оптический тиристор ТО. Открытие тиристора ТО вызовет разряд него конденсатора C2, что создает падение напряжения на резисторе R4, которое является управляющим для включения тиристора ТР ключевого устройства. Резистор R5 ограничивает в цепи управляющего электрода тиристора ТР. Конденсатор C1 разряжается через открытый тиристор ТР на соленоид, что создает импульс магнитного поля в излучателе. Цепь R6 и C4 подавляет гармонические колебания в контуре, образуемом конденсаторным накопителем C1 и соленоидном. С окончанием разряда C1 напряжение на тиристоре ТР подает и он закрывается. Схема возвращается в исходное состояние до прихода следующего положительного полупериода, после чего цикл повторяется, формируя последовательность импульсов магнитного поля.

Пример 1 осуществления способа. На семена ячменя воздействовали серией импульсов магнитного поля длительностью 30 мкс и амплитудной напряженности 100 кА/м, варьируя число импульсов от 300 до 2000. Результаты приведены в табл. 1.

Каждый опыт из серии проводился на площади 1 га в реальных условиях Воронежской обл. При числе импульсов менее 400 эффект повышения всхожести отсутствует, а при числе импульсов более 1000 не превышает контрольной всхожести и снижается ниже контрольной при увеличении числа импульсов.

Пример 2. На семена ячменя воздействовали серией импульсов магнитного поля с амплитудой напряженности 100 кА/м и числом импульсов 700, варьируя длительность импульсов от 5 до 60 мкс. Результаты представлены в табл. 2.

Положительный эффект наблюдается в диапазоне длительностей импульсов от 10 до 40 мкс. При длительностях менее 10 и более 40 мкс происходит подавление всхожести.

Пример 3. На семена ячменя воздействовали серией из 700 импульсов магнитного поля, в пределах от 30 до 200 кА/м варьируя амплитуду напряженности магнитного поля, при фиксированной длительности импульсов 30 мкс. Результаты представлены в табл. 3.

Положительный эффект наблюдается в интервале амплитуд напряженности магнитного поля от 70 до 150 кА/м. При напряженностях ниже 70 кА/м эффект повышения всхожести отсутствует, а при напряженностях выше 150 кА/м происходит подавление всхожести.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ предпосевной обработки семян, включающий обработку семян импульсным магнитным полем, отличающийся тем, что амплитуду напряженности магнитного поля устанавливают 70 150 кА/м, длительность импульсов 10 40 мкс и число импульсов воздействия 400 1000.

2. Устройство для предпосевной обработки семян, содержащее формирователь импульсов электрического тока, состоящий из блока питания, выход которого соединен с первым входом ключа-формирователя, выход последнего подключен к излучателю магнитного поля, блока управления ключом-формирователем, вход которого соединен с блоком питания, а выход с вторым входом ключа-формирователя, отличающееся тем, что ключ-формирователь выполнен в виде конденсаторного накопителя электрической энергии и ключевого блока, содержащего тиристор, параллельно включенный с RC-цепочкой, управляющий электрод которого через резистор соединен с выходом блока управления, а излучатель магнитного поля выполнен в виде соленоида.



Популярные патенты:

2278503 Способ управления формированием качества виноградного вина

... виноградного вина, включающем определение структурных признаков сырья, таких как сахаристость, титруемая кислотность, урожайность, выбор направления переработки, дегустационная оценка продукта, предусмотрено в различных экологических условиях возделывания проведение измерений значений внешних лимитирующих факторов по фазам онтогенеза сорта винограда, на основе полученных данных строят множественные регрессионные модели связи среди структурных признаков с внешними лимитирующими факторами и по параметрам этой модели выбирают оптимальный срок сбора урожая и зону возделывания, экологические условия которой наиболее соответствуют генетическим требованиям сорта, затем строят ...


2023363 Пневматическая сеялка

... ...


2282965 Разбрасыватель минеральных удобрений

... сменных насадок 22, различающихся формой и размерами проходных сечений, отвечающих выбранным технологиям внесения, дозирования и видам удобрении.Кронштейн 1 закрепляется на сошнике сеялки так, чтобы при рабочей позиции сошника хвостовик 5 занимал вертикальное положение.При регулировке разбрасывателя используются данные (таблицы) о параметрах разброса гранулированных удобрений в зависимости от их видов и углов наклона граней двугранного клина, притом и при асимметричном положении относительно его вершины формирователя потока.При разбросе удобрений на обе стороны относительно посевного рядка рычаг 3 закреплен на хвостовике 5 в среднем положении, при котором ось патрубка 2 проходит ...


2400960 Ориентирующее устройство для корнеплодов конической формы

... с ориентирующими поверхностями V-образного желоба.Приобретенная центром масс корнеплода линейная скорость преобразуется в угловую скорость разворота. Корнеплод зависает на уровне плоскости максимального диаметра с опорой в двух точках, являющихся воображаемой осью вращения корнеплода при его развороте, и выносится к посадочному аппарату скребками. Если корнеплод фиксируется в створе ориентирующих поверхностей хвостовой частью вверх, то он принудительно разворачивается лопастями битернрго барабана.Недостатки данного устройства: строгий жестко фиксированный угол между ориентирующими поверхностями V-образного желоба ограничивает размерный диапазон ориентируемых ...


2261597 Способ борьбы с нематодами - возбудителями болезней сельскохозяйственных растений

... в цистах не отмечено. Пример 4. В лабораторных опытах растворы препаратов 2 и 3 были испытаны в чашках Петри для выявления их действия на цисты картофельной нематоды, находящиеся в почве.Для этого в чашки Петри помещали 50 см3 почвы, содержащей 46 жизнеспособных цист (или 1553 яиц и личинок).Затем в каждую чашку вливали по 40 мл испытуемых растворов в различных концентрациях. Через 5 суток по мере высыхания почвы чашки поливали водой для поддержания 60-80% влажности почвы от ПВ.Через 10 суток цисты выделяли из почвы флотационно-вороночным методом и 10 штук от каждого варианта опыта анализировали методом микроскопирования с подсчетом жизнеспособного содержимого.Результаты ...


Еще из этого раздела:

2159526 Устройство для навешивания сельскохозяйственных орудий на трактор

2423036 Биоконтейнер для посадки растений

2053661 Устройство для сколачивания ульевых рамок

2304875 Способ активации воды для полива при выращивании растений и устройство для его осуществления

2251837 Рабочий орган кустореза

2285375 Способ обработки почвы и устройство для его осуществления

2069949 Устройство для направленной передачи наследственной информации

2127511 Композиция пленочного полимерного материала для покрытия теплиц и оптический активатор для полимерного материала (варианты)

2384048 Способ испытания травяного покрова на пойме малой реки

2455825 Пестицидная аэрозольная композиция