Способ автоматического управления температурным режимом в теплице и система для его осуществленияПатент на изобретение №: 2128425 Автор: Изаков Ф.Я., Попова С.А., Ждан А.Б. Патентообладатель: Изаков Феликс Яковлевич, Попова Светлана Александровна, Ждан Александр Борисович Дата публикации: 10 Апреля, 1999 Адрес для переписки: 454084, Челябинск, ул.Болейко 2-12, Изакову Ф.Я. Изображения![]() ![]() ![]() Изобретение относится к методам и средствам обеспечения поддержания микроклимата в теплице. Техническим результатом изобретения является повышение точности поддержания температуры воздуха в теплице. Для этого отопительная система теплицы делится на две группы так, что мощность нагревателей первой группы непрерывно пересчитывается как разность между потерями через ограждение теплицы и мощностью потока солнечной радиации. Мощность нагревателей второй группы составляет 20-25% от максимальной мощности первой группы. Текущее значение последней зависит от изменений оптимальной и наружной температур, плотности потока солнечной радиации и коэффициента теплопотерь, возраста растений и продолжительности фотопериода. Это учитывается наличием соответствующего таймера вычислительного устройства, подключенного через аналого-цифровой преобразователь и усилитель мощности к соответствующему исполнительному элементу. Нагреватели второй группы управляются по отклонению и подключены через соответствующие исполнительный механизм и усилитель к входу сравнивающего устройства, с которым связан датчик внутренней температуры и выход блока вычисления оптимальной температуры. 2 с. п. ф-лы, 3 ил. , , ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к сельскохозяйственной технике, а именно к способам и устройствам автоматического управления температурным режимом в теплице, более конкретно, к тепличному промышленному выращиванию сельскохозяйственных культур путем обеспечения оптимального микроклимата в сооружениях закрытого и защищенного грунта. Изобретение может быть использовано для оптимизации температурного режима как в пленочных, так и в ангарных и блочных теплицах. Известна система комбинированного обогрева теплицы, включающая систему водяного и воздушного обогрева [1]. Промышленностью выпускались системы регулирования УТ-123Н, в которых предусмотрено общее управление всей системой обогрева. Доказано, что для создания высококачественной системы автоматического регулирования необходимо иметь раздельное управление трубной и калориферной системами обогрева, причем управление последней можно осуществлять как изменением мощности калориферов (изменением количества поступающей горячей воды), так и изменением частоты вращения двигателей вентиляторов [2]. Более близким по технической сущности к предлагаемому решению является устройство для регулирования температуры воздуха в ангарных теплицах, оборудованных комбинированной системой обогрева. Устройство содержит систему подводящих и отводящих теплоноситель трубопроводов, трубные регистры, регулятор и регулирующий клапан, датчик температуры воздуха в теплице. Указанное устройство включает дополнительно группу отопительно-вентиляционных агрегатов с водяными калориферами. Мощность водяного обогрева изменяется за счет включения-отключения отдельных групп отопительно-вентиляционных агрегатов [3]. Более высокое качество управления температурой воздуха обеспечивается за счет использования дополнительного канала, имеющего лучшие динамические характеристики, чем основной. При этом работа отопительно-вентиляционных агрегатов приводит к интенсивному перемешиванию воздуха и выравниванию температурных полей по площади теплицы. Главный недостаток устройства заключается в том, что оно поддерживает температуру постоянной, тогда как ее следует изменять в зависимости от изменяющихся внешних условий. При этом можно обеспечить максимальную прибыль от реализации или минимальные энергозатраты на единицу продукции. Известен способ автоматического управления температурным режимом в теплице [4], в котором весь период выращивания растений делится на равные промежутки времени, продолжительность которых по крайней мере на порядок меньше постоянной времени самого быстродействующего возмущения. Для этого промежутка времени вычисляется оптимальная из условия равенства нулю производной от энергозатрат на единицу продукции температура. В соответствии с этой температурой изменяется уставка задатчика температуры, обеспечивающая поддержание ее постоянства в течение выбранного промежутка времени. Переход с дневного задания температуры на ночное осуществляют изменением коэффициентов модели. Расчету оптимальной температуры предшествует оценка дискриминанта. Если он оказывается отрицательным, то оптимальная температура определяется из условия максимальной продуктивности. Кроме того, осуществляют проверку условия, при котором температура, естественно устанавливаемая в теплице без обогрева, должна быть меньше оптимальной температуры. Если это условие не выполняется, то систему переключают на летний режим, когда вместо обогрева работает вентиляция. Целью изобретения является повышение точности поддержания температуры, устойчивости работы системы автоматического управления и качества переходных процессов в системе управления. Сущность изобретения состоит в том, что во-первых, отопительное устройство делится на две группы (например, шатрового и калориферного обогрева) таким образом, что мощность нагревателей первой группы определяется разностью между потерями через ограждение и мощностью потока солнечной радиации, а мощность нагревателей второй группы составляет 20 - 25% от максимальной мощности первой группы; во-вторых, специализированное вычислительное устройство снабжается двумя цифровыми выходами, один из которых выдает оптимальную температуру, а второй - необходимую для ее поддержания мощность, причем первый выход подается на регулятор системы калориферного обогрева (системы меньшей мощности), а второй на регулятор системы шатрового обогрева (системы большей мощности) через соответствующие цифроаналоговые преобразователи. В-третьих, для управления вентилем группы нагревателей, относящихся к системе управления мощностью, с помощью шагового двигателя целесообразно дополнить вычислительное устройство блоком расчета угла поворота и специальным выходом этой величины, который подключается к шаговому двигателю. Кроме того, при использовании предлагаемого изобретения для обогрева теплиц, оборудованных электронагревателями, в качестве исполнительного элемента используется тиристорный регулятор с число-импульсным управлением, вход которого подсоединен к выходу блока измерения мощности вычислительного устройства. Расчет значения оптимальной температуры с целью снижения энергозатрат производится по критерию удельной энергоемкости по приведенному ниже алгоритму, разработанному на основе математических моделей CO2-газообмена, полученных в ходе эксперимента в камере искусственного микроклимата. В общем виде математические модели CO2-газообмена записываются следующим образом: для интенсивности фотосинтеза![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ФОРМУЛА ИЗОБРЕТЕНИЯ1. Способ автоматического управления температурным режимом в теплице, включающий измерение текущих значений температуры и влажности наружного воздуха, скорости ветра, плотности потока солнечной радиации, уровня освещенности и температуры воздуха в теплице, определение на основе измеренных значений текущей величины коэффициента теплопотерь через ограждение теплицы и с его учетом вычисление оптимального значения температуры воздуха в теплице, сравнение последнего с текущим значением этого параметра и регулирование по результату сравнения мощности нагревателей системы обогрева теплицы, отличающийся тем, что измеряют текущее значение влажности воздуха в теплице, фиксируют возраст растений и текущее время суток, в зависимости от которых корректируют оптимальное значение температуры воздуха в теплице, при этом нагреватели системы обогрева теплицы разделяют на две группы, мощность которых устанавливают в соотношении (4 - 5) : 1, причем излучаемую мощность нагревательных элементов первой группы определяют как разность между мощностью потерь через ограждение и мощностью потока солнечной радиации, а регулирование излучаемой мощности нагревательных элементов второй группы осуществляют по результату сравнения текущего значения температуры воздуха в теплице с оптимальным значением этого параметра. 2. Система автоматического управления температурным режимом в теплице, содержащая реле освещенности, первичные преобразователи температуры и влажности наружного воздуха, уровня освещенности, скорости ветра, плотности потока солнечной радиации и температуры воздуха в теплице, выход последнего из которых связан с первым входом сравнивающего устройства, вычислительное устройство, включающее блок ввода данных и блоки расчета коэффициента теплопотерь через ограждение теплицы и оптимального значения температуры воздуха в теплице, и первую группу нагревателей, подключенную через первый исполнительный элемент к выходу первого усилителя, отличающаяся тем, что она снабжена первичным измерительным преобразователем влажности воздуха в теплице, вторым усилителем, исполнительным элементом и группой нагревателей, подключенных через соединенные последовательно второй исполнительный элемент и усилитель к выходу сравнивающего устройства, второй вход которого связан с выходом первого аналого-цифрового преобразователя, а в вычислительное устройство введен таймер возраста растений, блок расчета мощности нагревателей и первый аналого-цифровой нагреватель, вход которого соединен с объединенным выходом всех первичных измерительных преобразователей, а выход связан с первым входом блоков расчета коэффициента теплопотерь через ограждение теплицы и оптимального значения температуры воздуха в теплице, при этом первый выход блока ввода данных и таймер возраста растений объединены между собой и подключены к второму входу блоков расчета коэффициента теплопотерь через ограждение теплицы и оптимального значения температуры воздуха в теплице, причем второй вход последнего подключен также к выходу блока расчета коэффициента теплопотерь через ограждение теплицы, первый и второй выходы соединены соответственно с входом второго цифроаналогового преобразователя и с первым входом блока расчета мощности нагревателей, второй вход которого подключен к второму выходу таймера возраста растений, а выход соединен через второй аналого-цифровой преобразователь с входом первого усилителя, при этом второй выход блока ввода данных связан с входом таймера возраста растений.Популярные патенты: 2265444 Способ консервирования пантов ... 30 суток).Решаемая задача. Повышение качества пантов и интенсификация способа консервирования.Задача достигается тем, что жаровые обработки начинают не позднее 5 часов после срезки пантов. Их сортируют по массе на три группы. В первую группу относят сырье с массой одного панта до 0,4 кг, во вторую - от 0,4 до 0,75 кг, и в третью - панты с массой более 0,75 кг. Термические обработки осуществляют при температуре теплоносителя в сушильной камере 66°С в течение 3,5 часов. Чередующиеся с термообработками охлаждения производят путем продувки пантов холодным воздухом (от 0 - 2°С до +4-8°С) в течение 3 часов со скоростью 15-20 м/сек. Количество термообработок для пантов ... 2162635 Устройство для аэрозольного распыления (варианты) ... (смесь (-)[2,5-диоксо-3-(2-пропинил)-1-имидазолидинил]метил (1R,3R)-хризантемата и (+)-[2,5-диоксо-З-(2-пропинил)-1- имидазолидинил] метил (1R,3S)-хризантемата), (-)-[2,5-диоксо-3-(2-пропинил)-1- имидазолидинил]метил (1R, 3R)-хризантемата, (+)-[2,5-диоксо-3-(2-пропинил)-1-имидазолидинил]метил (1R, 3S)-хризантемата, и изомеры, производные и аналоги этих соединений. Одно или несколько соединений, выбранных из этих пиретроидных соединений, могут войти в аэрозоль для борьбы с вредными насекомыми. Фосфорографические и карбаматные инсектициды также включаются в компоненты для борьбы с вредными насекомыми. Примеры фосфографических инсектицидов включают фенитротион, хлорпирифос, ... 2154629 Производные оксима, способ их получения, фунгицидное средство и способ борьбы с грибковыми заболеваниями ... эфира [2-(2-метилфеноксиме-тил)-фенил] -2-метоксимино- тиоуксусной кислоты и нагревают с обратным холодильником в течение 15 минут. Реакционную смесь оставляют стоять при комнатной температуре в течение 24 часов, метанол отсасывают в вакууме и остаток распределяют между водой и сложным этиловым эфиром уксусной кислоты. После отгонки растворителя хроматографируют с применением в качестве элюента смеси диэтилового эфира и петролейного эфира в соотношении 1:3. Получают 2,1 г (25,5% от теории) 1-метокси-1,2-бис(метоксимино)-2-(2-метил-феноксиметил) фенил-этана. 1H-ЯМР (CDCl3/тетраметилсилан): 100 = 2,288 (3Н); 3,761 (3Н); 3,968 (3Н); 3,980 (3Н): 5,005 (2Н); 6,783/6,811/6,842/6,866 ... 2108695 Орудие для образования гребней в почве ... расположенным над съемным лемехом с режущими кромками и долото, отличающееся тем, что лемех выполнен в виде плоской трапеции с П-образно расположенными режущими кромками и со сквозным со стороны ее малого основания симметрично расположенным между ее боковыми гранями щелевым отверстием с размещенным вдоль него отогнутым от делителя-рыхлителя нижним концевым участком стойки с прикрепленным к ее концу выступающем за пределы контура малого основания трапеции долотом с возможностью плавного перехода отогнутого участка верхней поверхности стойки к верхней поверхности лемеха с обеспечением выполнения общей криволинейности на упомянутых поверхностях рабочих кромок ... 2310308 Способ определения выполненности семян сельскохозяйственных культур и устройство для его осуществления ... 2, рефлектор 3, конденсор 4, вращающийся прозрачный диск 5 с выполненными на нем конусными ячейками для семян 6, и шарикового фиксатора 7, качалку 8 с ползуном 9, опору 10 и подвижный корпус объектива 11.В корпусе объектива 11 расположены две двояковыпуклые линзы 12, зафиксированные в рамке 13, а также винтовая 14 и зубчатая 15 передачи с маховиком 16. Корпус объектива 11 связан с качалкой 8 шатуном 17.С помощью зубчатой реечной передачи 18, приводимой в движение штурвалом 19, корпус 1 устройства имеет возможность перемещаться относительно неподвижного штатива (не показан) и выполненного на нем направляющего паза 20.Увеличенное изображение контура семени 6 проецируется на ... |
Еще из этого раздела: 2261592 Ферма двухконсольного дождевального агрегата 2092004 Композиционный состав для обработки растений и их органов 2208312 Способ измерения количества молока в потоке и устройство для его осуществления 2500104 Способ приготовления препарата костной ткани и набор для его осуществления 2005344 Способ облучения живых организмов или растений 2119738 Орудие для уборки грубых кормов 2270554 Сепарирующее устройство зерноуборочного комбайна (варианты) 2420945 Гидравлическая система сельхозмашины 2277321 Колосоподъемник для косилочных систем уборочных машин 2477599 Жатка зерноуборочного комбайна |