Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ предпосевной обработки семян

 
Международная патентная классификация:       A01C

Патент на изобретение №:      2090031

Автор:      Василенко Владимир Федорович

Патентообладатель:      Василенко Владимир Федорович

Дата публикации:      20 Сентября, 1997

Адрес для переписки:      подача заявки25.07.1995 публикация патента20.09.1997


Изображения





1 Использование: сельское хозяйство в области растениеводства и может быть применено в семеноводстве. Сущность изобретения: способ предусматривает совместное непрерывное воздействие на семена потоками излучения в красной и инфракрасной областях спектра. Поток излучения в инфракрасном диапазоне формируют с длиной волны от 900 до 980 нм (с максимумом интенсивности потока излучения при длине волны 940 нм) с объемной плотностью от 1,0 до 10 Вт/м2. А воздействие в красной области осуществляют с длиной волны 600-720 нм (с максимумом интенсивности потока излучения при длине волны 600-670 нм) и при соотношении плотностей потоков излучения в красной и инфракрасной областях, соответственно, (5-10):1 в течение 60-360 сек. Устройство, реализующее способ предпосевной обработки семян, включает корпус 1, раму 2, источники излучения 3, 4, соответственно, в красной и инфракрасной областях спектра, блок питания и площадку 6 для размещения облучаемых семян. Для засыпки семян применен бункер 7. Устройство имеет стойку 8 и систему 9 для перемещения рамы 2 в вертикальном направлении. В качестве излучателей 3, 4 могут быть применены светодиоды, изготовленные на основе твердого раствора галий-алюминий-мышьяк, со следующим соотношением компонентов: As - 30%, а [Ga+Al] - остальное либо выполнены на основе твердого раствора фосфида галия. Инфракрасные светодиоды могут быть изготовлены на основе арсенида галия. В качестве источников 3, 4 излучения могут быть использованы также диодные лазеры. Применение изобретения обеспечивает повышение энергии прорастания, всхожести семян и силы роста растений при одновременном подавлении грибной инфекции, а также позволяет повысить эффективность, упростить и удешевить конструкции при одновременном уменьшении энергозатрат при ее эксплуатации. 2 з.п. ф-лы, 4 табл. 4 ил. , , ,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к сельскому хозяйству, в частности к области растениеводства, и может быть использовано в семеноводстве.

Известен способ предпосевной обработки семян, включающий совместное воздействие на семена излучением в красной и инфракрасной областях спектра [1] Однако данный способ не обеспечивает стабилизации показателей всхожести семян, так как при больших дозах лазерного облучения в красной области спектра происходят непредсказуемые генетические изменения, к тому же этот способ не обеспечивает подавление грибковой инфекции. Применение лазеров в большинстве случаев обеспечивает формирование потока излучения только в узком диапазоне работы лазеров без перенастройки, который в большинстве случаев не совпадает с зоной максимального поглощения пигмента излучения фитохрома растений, что ведет к низкой эффективности способа и к большему расходу энергии.

Цель изобретения состоит в повышении энергии прорастания, всхожести семян и силы роста растений при одновременном подавлении грибковой инфекции, а также в повышении эффективности, упрощении и удешевлении конструкции устройства для реализации способа при одновременном уменьшении энергозатрат при ее эксплуатации.

Поставленная цель достигается за счет того, что в способе предпосевной обработки семян, включающем совместное воздействие на семена потоками излучения в красной и инфракрасной /ИК/ областях спектра воздействия потоком излучения в инфракрасном диапазоне, проводят непрерывно с длиной волны от 900 до 980 нм с объемной плотностью от 1,0 до 10 Вт/м2 при соотношении плотностей потоков излучение красной и инфракрасной областях спектра соответственно 5-10:1 в течение 60-360 сек. Причем в частном случае потоки излучения в указанных областях спектра формируют посредством светодиодов или диодных лазеров, использование которых позволяет избежать нежелательного термического воздействия на семена, ухудшающего их посевные и урожайные качества.

На фиг. 1 изображена конструкция устройства для реализации способа предпосевной обработки семян, на фиг. 2 вид А, поясняющий размещение источников излучения в красной и инфракрасной областях спектра на раме, на фиг. 3 приведены гистограммы распределения поглощения интенсивности падающего потока излучения пигмента фитохромом в зависимости от длины волны, падающего потока, а также распределения интенсивности излучения в зависимости от длины волны для светодиодов в красной области спектра и гелия неонового лазера, на фиг. 4 представлена гистограмма распределения интенсивности излучения в зависимости от длины для инфракрасного светодиода.

Устройство для осуществления способа предпосевной обработки семян включает корпус 1, раму 2, источники излучения в красной области спектра, источники 4 излучения в инфракрасной области спектра с блоком питания 5 и площадку 6 для размещения облучаемых семян. Для засыпки семян применен бункер 7. Площадка 6 при обработке небольшого количества семян может быть выполнена в виде соединенного с бункером наклонного желоба. При обработке большого количества семян площадка 6 для размещения облучаемых семян может быть выполнена в виде конвейера. Устройство имеет стойку 8, с которой соединена рама 2. На стойке размещена система 9 для перемещения рамы в вертикальном направлении, которая нужна для регулирования интенсивности потока облучения.

Система 9 для перемещения рамы может быть выполнена в виде, например, винтового домкрата или цилиндров. Источники 3, 4 излучения размещены на раме 2 в несколько рядов с чередованием между собой. Источники 3, 4 излучения могут быть размещены между собой в шахматном порядке.

В качестве источников 3, 4 могут быть использованы светодиоды. Причем светодиоды для излучения в красной области спектра выполняют на основе твердого раствора галий-алюминий-мышьяк, при соотношении компонентов в твердом растворе As 30% а [Ga+Al] остальное, либо выполняют на основе твердого раствора фосфида галия.

Целесообразность применения таких светодиодов хорошо показана на гистрограммах фиг. 3, из которых видно, что диапазоны наиболее часто встречающихся значений интенсивностей поглощения падающего потока излучения пигментом фитохромом и излучения светодиодов в красной области спектра в зависимости от длины волны практически совпадают, что указывает на высокую эффективность применения светодиодов, то есть в данном случае излучение эффективно поглощается фитохромом. Особенно это видно в сравнении с гелий-неоновым лазером, который имеет строго постоянную длину волны излучения, не совпадающую с диапазоном наиболее часто встречаемых значений длин волн, в которых происходит максимальное поглощение потока пигментом фитохромом.

Инфракрасные светодиоды выполняют на основе арсенида галия, и они обеспечивают излучение в диапазоне волн 900 до 980 нм /с максимумом интенсивности излучения 940 нм/, как показано на фиг. 4.

В качестве источников 3, 4 излучения могут быть применены также диодные лазеры. В качестве лазерного вещества диодных лазеров, излучающих в красном диапазоне спектра, могут быть использованы галий-алюминий-мышьяк, которые имеют диапазон излучения, совпадающий с диапазоном наиболее часто встречающихся значений интенсивностей поглощения излучения пигментом фитохромом, правда, несколько уже по сравнению с аналогичными параметрами светодиодов.

В качестве лазерного вещества в инфракрасном диапазоне спектра диодных лазеров может быть применен арсенид галия, который обеспечивает максимальную интенсивность излучения в диапазоне волн около 940 нм.

Указанные диодные лазеры целесообразно использовать в установках с большей производительностью, в том числе и в сочетании с упомянутыми светодиодами.

Семена засыпают в бункер 7, из которого они попадают на площадку 6 для размещения облучаемых семян. Затем включают устройство и производят совместное непрерывное воздействие на семена потоками излучения в красной и инфракрасной областях спектра. Воздействие потоком излучения в инфракрасной области спектра проводят с длиной волны от 900 до 980 нм /с максимумом интенсивности излучения при длине волны 940 нм/, потока излучения от 1,0 до 10 Вт/м2, при этом воздействие в красной области спектра осуществляют с длиной волны 600-720 нм /с максимумом интенсивности излучения 660-670 нм/ при соотношении плотностей потоков излучения в красной и инфракрасной областях спектра соответственно 5 - 10:1 в течение 60-360 сек.

Примеры осуществления способа.

Облучение проводили красными светодиодами с максимумом интенсивности излучения при длине волны 660-670 нм и инфракрасными максимум излучения при длине волны интенсивности 935 945. Светодиоды для излучения в красной части спектра выполнены на основе твердого раствора галий-алюминий-мышьяк, а светодиоды для излучения в инфракрасной области соответственно на основе арсенида галия. Плотность потока излучения в инфракрасной области спектра выбрана от 1,0-10 Вт/м2 при соотношении плотностей потоков излучения в красной и инфракрасной областях спектра, соответственно 5 10:1. Семена разделяли по группам всхожести. Облучение сухих семян проводили за 1-2 часа до начала проращивания с экспозициями 60-360 сек.

Пример 1.

Семена томатов сортов Белый налив, Викторина, Подарок Молдовы, Ступике разной всхожести были подвергнуты облучению. Всхожесть семян и сырую массу проростков контрольного /без облучения/ и опытного вариантов определяли через 9 суток. Усредненные показатели результатов испытаний представлены в таблицах 1 и 2.

Как следует из результатов испытаний, приведенных в таблице 1, 2, стабильно повышается всхожесть семян и масса проростков, особенно в группах семян с низкой всхожестью.

Пример 2.

Облучение семян огурцов сорта Либелла комбинированным излучением в красной и инфракрасной областях спектра стимулировало их прорастание, абсолютное увеличение всхожести облученных семян по отношению к контрольным составило 15-18% то есть всхожесть возросла с 65% в контроле до 75-78% в опыте. Сырая масса проростков /на 10 сутки/, выросших из облученных семян, была на 15-20% выше контрольных.

Пример 3.

Семена 4 видов астр /Веснянка, Павлина, Голландская сортовая, Пионовидная/ разной всхожести были подвергнуты облучению в красной и совместно в красной и в инфракрасной областях спектра. Всхожесть семян и сырую массу проростков контрольного /без облучения/ и опытного вариантов определяли через 5 суток. Усредненные показатели результатов испытаний представлены в таблицах 3 и 4.

Облучение семян увеличивает их всхожесть и сырую массу проростков по сравнению с контролем.

Пример 4.

Облучение семян баклажанов сорта Алмаз комбинированным излучением в красной и инфракрасной областях повысило примерно в 2 раза энергию прорастания на 5 сутки /с 22,5% в контроле до 47,3% в опыте/. Всхожесть семян возросла при этом на 8 сутки с 64% контроле, соответственно до 72% и до 75-78% в опыте. Сырая масса проростков увеличилась с 21,5Способ предпосевной обработки семян, патент № 20900310,2 мг в контроле до 28,1Способ предпосевной обработки семян, патент № 20900311,35 мг /131%/ в опыте.

Во всех опытах при облучении семян потоками излучения в красной и инфракрасной областях спектра удалось подавить развитие грибковой инфекции.

Таким образом, данный способ предпосевной обработки семян позволяет: повысить стабильность и процент всхожести семян, ускорить процесс прорастания семян, улучшить питание растений за счет увеличения степени поглощения ионов K+ /калия, Ca++/ /кальция/, Mg++/магния/, повысить активность энергетических процессов дыхания и фотосинтеза, ускорить протекание ростовых процессов /скорости роста клеток, органов и тканей/, подавить развитие грибковой инфекции.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ предпосевной обработки семян, предусматривающий одновременное воздействие на семена излучением в инфракрасной и красной областях спектра, отличающийся тем, что поток излучения в инфракрасной области спектра формируют непрерывно с длиной волны в диапазоне 900 980 нм и с объемной плотностью 1,0 10 Вт/м2, а соотношение плотностей потоков излучения в красной инфракрасной областях спектра, устанавливают в пределах (5 10) 1 и осуществляют воздействие в течение 60 360 с.

2. Способ по п.1, отличающийся тем, что потоки излучения в инфракрасной и красной областях спектра формируют посредством светодиодов.

3. Способ по п.1, отличающийся тем, что потоки излучения в инфракрасной и красной областях спектра формируют посредством диодных лазеров.



Популярные патенты:

2040900 Фунгицидное средство

... и особенно желательно от 20 г до 600 г/га. Составление средств или составов, содержащих активное вещество формул I и II и, смотря по обстоятельствам, твердое или жидкое вспомогательное вещество, производят известным образом, например, тщательным смешением и/или перемалыванием активных веществ с рассеивающими средствами, такими, например, как растворители, твердыми носителями, а при определенных условиях с поверхностно-активными веществами (тензидами). В качестве растворителя можно иметь в виду ароматические углеводороды, предпочтительно фракции С8 до С12, например, смесь ксилолов, замещенные нафталины, сложный эфир фталевой кислоты как дибутил- или диоктилфталат; алифатические ...


2200216 Волокнистый материал для защиты от бытовых насекомых

... 0,50 м3, в верхней части которых размещают пропитанные пластины (по одной пластине). Имеются также контрольные шкафы, куда пластины не помещают. Опытные и контрольные шкафы заполняют неаппретированным сукном арт. 3907 (до 2 м2). На протяжении эксперимента шкафы открывают 2 раза в сутки, имитируя условия проживания. Опыты производят при температуре воздуха 24,01,5oС в течение четырех месяцев. В каждый шкаф запускают по 50 бабочек моли 1-2 дневного возраста. В течение эксперимента бабочек запускают в шкафы каждые 14 суток. Через 30 суток производят осмотр шкафов и развешенного в них сукна. При осмотре учитывают количество живых бабочек на сукне. Одновременно производят взвешивание ...


2245614 Устройство для очистки вороха в зерноуборочном комбайне

... решето, вентилятор, зерновой и колосовой шнеки. Вентилятор выполнен всасывающим с аспирационным каналом, входное окно которого расположено у концевой зоны транспортной доски. Осадочная камера с автоматической порционной выгрузкой установлена над передней частью днища копнителя. Решето выполнено прутковым, наклоненным к колосовому шнеку с возможностью изменения расстояния между прутками и регулирования угла наклона в вертикальной плоскости путем поднятия и опускания его передней части, причем прутки в сечении представляют собой равносторонний треугольник.Сущность изобретения заключается в том, что вентилятор выполнен всасывающим с аспирационным каналом, входное окно которого ...


2460269 Малогабаритный картофелеуборочный комбайн

... элеватора 15 регулируется перестановкой болта по отверстиям сектора 17.На верхней ветви клубнеприемного элеватора 11 клубни, встретившись с отражательным щитком 12, смещаются в сторону, сходят с поверхности элеватора и по лотку 24 поступают в тару (корзину, мешок). При этом мелкие почвенные примеси остаются на поверхности элеватора 11, проходят через зазор между нижней кромкой отражательного щитка 12 и прутками элеватора 11 и выбрасываются вперед на землю. В необходимых случаях этот зазор можно отрегулировать таким образом, чтобы через него проходили мелкие клубни.На сухих глинистых почвах клубни по лотку 24 сходят на землю, образуя ровный валок. Основные достоинства предлагаемого ...


2227965 Способ возделывания бахчевых культур и устройство для его осуществления

... культур, вид в плане.Способ возделывания бахчевых культур, преимущественно арбузов, реализуют следующим образом. По традиционной технологии в ранневесенний период проводят предпосевную обработку почвы, направленную на механическое уничтожение сорной растительности и сохранение запасов почвенной влаги в корнеобитаемом горизонте. Посев семян осуществляют с нарезкой одной или двух направляющих борозд. Благодаря направляющем бороздам осуществляют междурядную обработку почвы с минимальными размерами защитных зон. По этим бороздам осуществляют выборочную уборку плодов.После укладки плетей в рядки 1 шириной полос b1 при выполнении междурядных 2 обработок почвы в междурядьях шириной В ...


Еще из этого раздела:

2502793 Масло, семена и растения подсолнечника с модифицированным распределением жирных кислот в молекуле триацилглицерина

2073513 Способ профилактики технологических стрессов молодняка крупного рогатого скота

2075926 Устройство для группового учета молока на доильных установках

2064741 Устройство для обработки почвы

2427999 Способ повышения плодородия мерзлотных засоленных почв в условиях криолитзоны

2167648 Средство для защиты от укусов кровососущих насекомых (варианты) и способ его получения

2083070 Способ предпосевной обработки семян и устройство для его осуществления

2263431 Устройство для предпосевной обработки семян

2228024 Способ профилактики мастита у коров и устройство для его осуществления

2182765 Имитатор звуков рыб