Способ автоматического управления температурным режимом в теплицеПатент на изобретение №: 2049380 Автор: Изаков Ф.Я., Попова С.А. Патентообладатель: Попова Светлана Александровна Дата публикации: 10 Декабря, 1995 Адрес для переписки: подача заявки13.10.1992 публикация патента10.12.1995 ИзображенияИспользование: изобретение относится к сельскохозяйственной технике, а именно к способам автоматического управления температурным режимом в теплице. Сущность изобретения: изобретение повышает точность оптимизации температурного режима и исключает работу при температурах, меньших допускаемой. Для этого дополнительно определяют возраст растения, продолжительность фотопериода, влажность воздуха в теплице, а также относительное время дня или ночи. Уточняют в соответствии с этими измерениями оптимальную по продуктивности температуру, а оптимальную по энергоемкости температуру сравнивают с минимально допустимой. Если оптимальная температура больше допустимой, то устанавливается оптимальная температура, а если оптимальная температура меньше допустимой, то устанавливается допустимая температура. Но если температура достигает по времени предельной продолжительности стояния, то устанавливается температура, оптимальная по продуктивности. 1 ил. 1 табл. , ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУИзобретение относится к сельскохозяйственной технике, а именно к способам автоматического управления температурным режимом в теплице, более конкретно к тепличному промышленному выращиванию сельскохозяйственных культур путем обеспечения микроклимата в сооружениях закрытого и защищенного грунта. Преимущественно изобретение может использоваться в пленочных теплицах, но оно может найти применение при оптимизации температурного режима в ангарных и блочных теплицах. Известен способ автоматического управления темпеpатуpным режимом в теплице, в котором для повышения эффективности весь период выращивания растений делится на равные промежутки времени, продолжительность которых по крайней мере на порядок меньше постоянной времени самого быстродействующего возмущения. Для этого промежутка времени вычисляется оптимальная из условия равенства нулю производной от экономического критерия температура. В соответствии с этой температурой изменяется уставка задатчика температуры, обеспечивающая поддержание постоянства температуры в течение выбранного промежутка времени. Однако способ обладает большими энергозатратами и не очень надежен. Известен также способ автоматического управления температурным режимом в теплице. В предложенном способе, принятом за прототип, вместо оценки по максимуму прибыли используется оценка по минимуму удельных энергозатрат. Вместо параметров модели продуктивности в вычислительное устройство вводят параметры моделей интенсивности фотосинтеза и темнового дыхания. Вместо вычисления удельной энергоемкости и поиска экстремума определяют температуру, при которой этот экстремум обеспечивается, из условия равенства нулю производной от удельной энергоемкости. Уставку задатчика изменяют в соответствии с определенной таким путем температурой. Переход с дневного задания температуры на ночное осуществляют изменением коэффициентов модели. Расчету оптимальной температуры предшествует оценка дискриминанта. Если он оказывается отрицательным, то оптимальная температура определяется из условий максимальной продуктивности. Кроме того, осуществляют проверку условия, при котором температура, естественно устанавливаемая в теплице без обогрева, должна быть меньше оптимальной температуры. Если это условие не выполняется, то систему переключают на летний режим, когда вместо обогрева работает вентиляция. Однако способ имеет ряд недостатков. Во-первых, он не учитывает возраст растений, продолжительность фотопериода, влажность воздуха в теплице. Это снижает точность определения оптимальной температуры. Во-вторых, в ряде случаев определяемая предложенным способом температура оказывается ниже допустимой (tопт < tдоп), в результате чего это ведет либо к гибели растений, либо к ухудшению их потребительских качеств. Более того, даже при допустимой температуре растение может погибнуть, если эта температура длится достаточно долго. Иными словами, ограничения должны быть не только по допустимой температуре, но и по ее длительности стояния. В-третьих, в последнее время получены более точные математические модели продуктивности, на базе которых получены уточненные выражения для определения оптимальных температур. Для интенсивности фотосинтеза получена модель lgФ A0+A1+E+A2tв+A3T2+A4фп+ + A5 в+А6+А7с+А11Е2+А22t2в+ +А33Т22+А44 фп2+А55 в2+А66 2+А77 с2 + + А12Etв+А13ЕТ2+А14Ефп+А15Е в+ +А16Е +А17Еc+ А23tвТ2+А24tв фп+ +А25tв в+А26tв +А27tв с+А34T2 фп + + А35T2 в+А36Т2 +А37Т2 с+А45 фп в+ +А46фп +А47 фпc+A56 в +А57 в с+ + А67 с, где Е освещенность, клк; tв температура в помещении, оС; Т2 средняя температура предыдущей ночи; фп продолжительность фотопериода, ч; в возраст растения, сут. влажность воздуха в помещении, с относительное время дня. Аналогичная модель получена для интенсивности темнового дыхания Д. Только в этой модели вместо текущей освещенности фигуpиpует средняя освещенность предыдущего дня, вместо средней температуры предыдущей ночи средняя температура дня, а вместо относительного времени дня относительное время ночи. Относительное время дня c= а относительное время ночи c= где текущее время; восх время восхода солнца; зах время захода солнца; n число переходов через 24.00 (0 или 1). Численные значения коэффициентов модели для огурца сорта "Московский" приведены в таблице. Задача изобретения заключается в том, что необходимо повышать точность оптимизации температурного режима и исключить работу при температурах, меньших допустимой. Для этого в способе автоматического управления температурным режимом в теплице, включающем разбиение периода выращивания растений на равные промежутки времени, измерение в каждом из этих промежутков освещенности, плотности потока солнечной радиации, наружной температуры, скорости ветра и влажности наружного воздуха, определение по результатам этих измерений оптимальной по продуктивности и естественной температуры, сравнение этих температур и при превышении первой над второй включение системы обогрева и поддержание ею температуры, оптимальной по продуктивности, в противном случае включение системы вентиляции, корректировку математической модели продуктивности (интенсивности фотосинтеза или темнового дыхания) и ее коэффициентов при переходах "день-ночь" и "ночь-день", определение величины и знака дискриминанта, характеризующего наличие минимума энергоемкости и, в случае его положительности, определение оптимальной по энергоемкости температуры, а также изменение в соответствии с этой температурой уставки задатчика, дополнительно определяют возраст растения, продолжительность фотопериода, влажность воздуха в теплице, а также относительное время дня и ночи, уточняют в соответствии с этими измерениями оптимальную как по продуктивности, так и по энергоемкости температуру, а полученную оптимальную температуру сравнивают с минимально допустимой, причем, если оптимальная температура больше допустимой, то устанавливается оптимальная температура, а если оптимальная температура меньше допустимой, то устанавливается допустимая температура, при достижении продолжительности стояния которой предельной величины устанавливается температура, оптимальная по продуктивности. Известно устройство для автоматического управления температурно-влажным режимом в промышленных птичниках, в котором учитывается возраст птицы. Однако на продуктивность влияет не только возраст в сутках, но и время суток, которое в существующих системах не учитывается. В изобретении указанные недостатки устраняются, во-первых, тем, что указанные выше факторы (возраст растений, продолжительность фотопериода, влажность воздуха в теплице) включаются в математическую модель и учитываются при расчете оптимальной температуры; во-вторых, тем, что в случае, когда оптимальная температура меньше допустимой, система поддерживает допустимую температуру, и в-третьих, тем, что допустимая температура поддерживается в течение времени доп, а затем повышается до оптимальной по продуктивности. Таким образом, заявляемый способ отличается тем, что используются более точные математические модели фотосинтеза Ф и темнового дыхания Д, а, следовательно, и более точные модели температуры, оптимальной по продуктивности tопт= В связи с уточнением математической модели оптимальная по энергоемкости температура tоптэ= + где tест= tн+ D + tн наружная температура, оС; Q поток солнечной радиации, Вт/м2; К коэффициент теплоотдачи, Вт/м2 х х оС. На чертеже представлена функциональная схема устройства, реализующего данный способ. Устройство содержит релейный 1 и сравнивающий 2 элементы, усилитель 3, исполнительный механизм 4, регулирующий орган 5 и датчик 6 температуры воздуха в теплице, а также устройство 7 для расчета оптимальной по энергоемкости температуры. Устройство для расчета оптимальной по энергоемкости температуры включает в себя блок 8 расчета оптимальной по продуктивности температуры, блок 9 расчета естественной температуры, блок 10 определения дискриминанта, компараторы 11 и 12, сумматор 13, блок 14 расчета коэффициента теплопотерь, переключатель 15 режимов, интеграторы освещенности 16 и дневной температуры 17, генератор 18 тактовых импульсов, счетчик 19 импульсов, усреднители освещенности 20 и дневной температуры 21, устройство 22 памяти и блок 23 ввода данных. Устройство оснащено также датчиками влажности наружного воздуха 24, солнечной радиации 25, освещенности 26, реле 27 освещенности, датчиками 28 скорости ветра и наружной температуры 29. Кроме того, дополнительно в систему включаются датчики возраста (таймер) 30 и влажности воздуха внутри помещения 31. В состав устройства для расчета оптимальной температуры вводятся дополнительные блоки 32 определения длительности фотопериода, блок 33 сравнения оптимальной температуры с допустимой и блок 34 сравнения продолжительности стояния допустимой температуры с допустимой продолжительностью, а также блок 35 расчета относительного времени дня и ночи. Способ осуществляют следующим образом. Вегетационный период выращивания растений делят на равные, предварительно вычисленные по длительности, промежутки времени. При этом исходят из условия, что длительность их должна быть на порядок меньше постоянной времени самого быстродействующего возмущения. Затем для каждого промежутка времени определяется оптимальная температура, которая в этот промежуток должна поддерживаться постоянной. После определения продолжительности промежутка времени генератор 18 тактовых импульсов (ГТИ) настраивают на этот промежуток. Генератор выдает импульсы через указанные равные промежутки времени, в течение которых происходит обработка информации, получаемой от датчиков 6, 24, 25, 26, 28, 29, 30 и 31. Сигналы от датчика 26 освещенности, датчика возраста (таймера) 30, датчика влажности воздуха внутри помещения 31 поступают в блок 8 расчета оптимальной по продуктивности температуры. Сюда же поступает сигнал от блока определения длительности фотопериода 32 (который в свою очередь определяется с помощью таймера 30 путем фиксирования времени восхода и захода реле освещенности 27) и блока расчета относительного времени 35 (получающего информацию от таймера 30 и блока определения длительности фотопериода 32). Сигналы от датчика влажности наружного воздуха 24 и датчика скорости ветра 28 поступают на блок 14 определения коэффициента теплопотерь, результаты работы которого вместе с сигналами датчиков солнечной радиации 25 и наружной температуры 29 поступают на блок 9 измерения естественной температуры в теплице. Результаты вычислений и выхода блоков 8 и 9 поступают на компаратор 11. Если естественная температура окажется больше оптимальной, то автоматически включается система вентиляции, а система управления обогревом и сам обогрев отключаются с помощью релейного элемента 1. Если естественная температура оказывается меньше оптимальной, то результат определения естественной температуры с блока 9 и сигнал с блока 8 расчета оптимальной по продуктивности температуры поступают на блок 10 определения дискриминанта, куда предварительно вводятся с помощью блока 23 ввода данных коэффициенты модели продуктивности (с этого же блока в блок расчета тепловых потерь 14). С первого выхода блока 10 сигнал подается на компаратор 12, а со второго выхода блока 10 и выхода блока 9 на сумматор 13, подсчитывающий оптимальную по энергоемкости температуру. При положительном дискриминанте сигнал на сравнивающий элемент 2 подается от сумматора 13, в противном случае от блока 8. Коммутация осуществляется переключателем 15, управляемым компараторами 11 и 12. Таким образом, для каждого дискретного промежутка времени вычислительный блок 7 определяет оптимальную температуру. Кроме того, с помощью блока 37 оптимальная температура сравнивается с допустимой, вводимой с блока 23. Если оптимальная температура окажется больше допустимой, то на переключатель 15 подается оптимальная температура, если меньше, то допустимая. Блок 23 фиксирует продолжительность стояния допустимой температуры и если она окажется больше заданной (заданная выдается от блока 23), то вместо допустимой на переключатель 15 подается температура, оптимальная по продуктивности. Система автоматической оптимизации, состоящая из датчика 6 внутренней температуры, вычислительного блока 7, сравнивающего элемента 2, усилителя 3, исполнительного механизма 4 и регулирующего органа 5, поддерживает эту температуру в течение выбранного промежутка времени, по окончании которого генератор 18 тактовых импульсов сбрасывает результат предыдущего расчета и начинает новый. Генератор тактовых импульсов 18 одновременно управляет работой блоков 13, 8, 9 и 10. Роль генератора тактовых импульсов может выполнять и таймер 30, что существенно удешевляет систему. Переключение с дневного на ночной режим осуществляется реле 27 освещенности, которое вместо коэффициентов дневной модели подключает от устройства 23 ввода данных к блоку 10 расчета дискриминанта и блоку 8 расчета оптимальной по продуктивности температуры коэффициенты ночной модели, значения которых вводятся при наладке. Одновременно к вычислительному устройству 8 подключается устройство 22, получающее сигналы от усреднителя 20 освещенности и усреднителя 21 дневной температуры, которые в течение дневного периода выдают частные от деления сигналов от интеграторов 16 и 17 на показания счетчика 19 импульсов, работающего от генератора 18 тактовых импульсов и реле 27 освещенности. Одновременно от вычислительного устройства отключается блок 14 вычисления коэффициента тепловых потерь с датчиками 24 и 28, а также датчики солнечной радиации 25 и освещенности 26. Датчик 29 наружной температуры подключен к вычислительному устройству постоянно. Переключение с ночного режима на дневной происходит аналогично. Предлагаемый способ реализует, например, устройство для расчета оптимальной температуры, состоящее из следующих элементов: центрального процессора; двух постоянных запоминающих устройств ПЗУ; оперативного запоминающего устройства ОЗУ; дешифратора адреса памяти; дешифратора адресов ввода и вывода; таймера с кварцевым генератором и устройства управления; органов управления; индикаторов; устройства управления датчиками; устройства прерывания. В качестве центрального процессора может быть использован процессор типа К1801ВМ1; в качестве постоянных запоминающих устройств микросхемы К573РФ4 и К573РФ5, оперативное запоминающее устройство на микросхеме К573РУ10. Объем программы, записанной в ПЗУ, составит 10 кбайтов, объем памяти ОЗУ 2 кбайта. В качестве таймера и одновременно датчика возраста используется БИС типа К512ВИ1. Тактовая частота, определяющая время, задается кварцевым генератором. Все датчики выполняются в виде автономных модулей, которые располагаются в соответствующих точках теплицы и выполняют функцию преобразования контролируемых параметров среды в электрический сигнал постоянного тока с напряжением в диапазоне 0.10 В. Автономные модули получают электропитание команды управления и выдают информационные сигналы в единый канал связи и питания коаксиальный кабель. Для питания схем датчиков предназначен модуль питания датчиков, вырабатывающий частоту 20 кГц. Для управления модулями датчиков предложен модуль контроллера, работающий на частоте 250.375 кГц. В качестве датчика температуры используется термометр сопротивления, в качестве датчиков влажности внутреннего воздуха гигрометр конструкции АФИ; в качестве датчика влажности наружного воздуха система, состоящая из диэлектрической пластины и двух электродов из металлов с различной работой выхода. Для измерения скорости ветра потребовалась комбинация тахометрического устройства по авт.св. N 1140047 и оптоэлектронного по авт.св. N 857882. Датчик освещенности арсенид-галиевый фотоэлемент, датчик солнечной радиации батареи элементов Пельтье. Все датчики снабжены нормирующими преобразователями на операционных усилителях К551УД1 или К140УД6. Впрочем, вместо аппаратного решения возможно чисто программное. Пример реализации способа (при оптимизации температурного режима выращивания огурца сорта "Московский тепличный"). а) Пусть датчики показывают следующие значения измеряемых величин Е=21,1 клк; =80% в=22 сут. фп 15 ч; Тн 30,5оС. Тогда температура, оптимальная по продуктивности tопт 31,1оС. Если при этом параметры окружающей среды tн-2,5оС; V 15 м/с; В 80% Q 215 Вт/м2, то естественная температура в теплице 22,5оС. Дискриминант D + -156,2 Поскольку D < 0, оптимума по энергоемкости не существует и система работает при 31,3оС. б) Предположим влажность В 60% Тогда tопт 13,2оС Пусть далее скорость ветра 5 м/с. При этом естественная температура возрастает до tест 42,3оС. Т.к. tест > tопт, то включается вентиляция. Пусть влажность в теплице 80% продолжительность фотопериода фп 9 ч. Тогда tопт 30,6оС. Пусть tн -27,5оС; V 15 м/с; В 80% Естественная температура снизилась до tест -2,5оC. D 99,2 > 0. Поэтому tоптэ 24,4оС, которая и устанавливается. Как видим, оптимальная по энергоемкости температура на 6оС ниже, чем оптимальная по продуктивности, что дает большую экономию теплоты. в) Пусть Е=10,5 клк; В 80% в 14 сут. фп 15 ч; Tн=19,5оС Тогда tопт 18,9оС. При tн -27,5оС; V=15 м/с; В 80% tест=-15,3оС. Поскольку D 117,7 > 0, то tоптэ 12,6оС. Т. к. tоптэ < tдоп 14оС, то устанавливается температура 14оС. Если в течение трех суток температура не повысится, то система переключится на tопт 18,9оС.ФОРМУЛА ИЗОБРЕТЕНИЯСПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕМПЕРАТУРНЫМ РЕЖИМОМ В ТЕПЛИЦЕ, включающий разбиение периода выращивания растений на равные промежутки времени, измерение в каждом из этих промежутков освещенности, плотности потока солнечной радиации, наружной температуры, скорости ветра и влажности наружного воздуха, определение по результатам этих измерений оптимальной по продуктивности и естественной температуры воздуха в теплице, сравнение этих температур и при повышении первой над второй включение системы обогрева и поддержание ею температуры, оптимальной по продуктивности, в противном случае включение системы вентиляции, корректировку математической модели и ее коэффициентов при переходах день-ночь и ночь-день, определение по алгоритму модели процессов в теплице величины и знака дискриминанта, характеризующего наличие минимума энергоемкости, и в случае его положительности определение оптимальной по энергоемкости температуры, а также изменение в соответствии с этой температурой уставки задатчика, отличающийся тем, что дополнительно определяют возраст растения, продолжительность фотопериода, влажность воздуха в теплице, а также относительное время дня и ночи, упомянутые величины дискриминанта определяют из выражения где tопт температура, оптимальная по продуктивности; tест температура воздуха в теплице, которая устанавливается при отсутствии дополнительного обогрева; A22 коэффициент регрессии модели продуктивности при квадрате температуры в теплице; а оптимальную по энергоемкости температуру toпт.э из выражения и в соответствии с этим корректируют оптимальную по продуктивности температуру, а оптимальную по энергоемкости температуру сравнивают с минимально допустимой температурой воздуха в теплице, причем если оптимальная температура больше минимально допустимой температуры воздуха в теплице, то устанавливают оптимальную температуру, а если оптимальная температура меньше допустимой, то устанавливают допустимую температуру, а при достижении последней заданного максимального срока ее стояния устанавливают температуру, оптимальную по продуктивности.Популярные патенты: 2261588 Способ электростимуляции жизнедеятельности растений ... почвы. К сожалению, эффективность слабых полей исследована совершенно недостаточно" [3, стр.105].Создаваемые токи электростимуляции позволят повысить морозо- и засухоустойчивость растений [3, стр. 145-147].Как сказано в источнике [3, стр. 145], "Совсем недавно стало известно: электричество, подаваемое непосредственно в корнеобитаемую зону растений, способно облегчить их участь при засухе за счет пока не выясненного физиологического эффекта. В 1983 г. в США. Польсон и К. Верви опубликовали статью, посвященную транспорту воды у растений при стрессе. Тут же они описали опыт, когда к фасоли, подвергавшейся воздушной засухе, прикладывали градиент электрических потенциалов в 1 ... 2182420 Устройство для перерезания стволов деревьев ... другого в направлении перерезаемого ствола дерева так, что сумма величин этих смещений для каждой кромки равна половине диаметра перерезаемого ствола дерева. 4. Устройство по пп. 1-3, отличающееся тем, что привод образован силовым цилиндром, шток которого шарнирно связан с задней поперечной стороной полотна, а корпус шарнирно закреплен на заднем конце рамки, выполненным замкнутым. 5. Устройство по пп. 1-3, отличающееся тем, что привод образован парой силовых цилиндров, каждый из которых шарнирно связан своим штоком с одним кронштейном, закрепленным на конце продольного стержня, а корпусом шарнирно связан с другим кронштейном, закрепленным на балке рамки, в которой установлен ... 2051553 Устройство для обезвоживания навоза ... способность днища, обеспечивает долговечность конструкции, сокращает расход энергии на колебания, обеспечивает эффективную самоочистку отверстий в перфорированном днище при проходе жидкости из навоза. При выполнении стержней из упругого материала снижается расход энергии на колебания, упрощается конструкция опор из-за отсутствия в них упругих элементов, улучшается самоочистка щелей, так как увеличивается разница в амплитудах колебаний по сечениям днища. Если стержни сделаны из круглого проката, то сокращается их количество за счет более эффективного прохода жидкости, что обеспечивает более "тонкое" обезвоживание навоза. В основании бункера под подающим шнеком и корпуса под ... 2307495 Пневматический высевающий аппарат ... ряда, а центр сопла избыточного давления расположен на окружности, концентричной окружностям расположения центров дозирующих элементов, радиус которой равен полусумме радиусов окружностей расположения центров дозирующих элементов, кроме того, внутренний диаметр сопла избыточного давления равен двойному максимальному диаметру дозирующих элементов, заборное устройство содержит две трубки, а выступы в крышке и прокладке выполнены таким образом, что их длина больше расстояния от внешней кромки высевающего диска до окружности расположения дозирующих элементов внутреннего ряда на величину, равную максимальному диаметру дозирующих элементов. MM4A - Досрочное прекращение действия ... 2056737 Способ диагностики морозоустойчивости плодовых культур ... действию неблагоприятного фактора, накопление фруктозы менее существенно по сравнению с неустойчивыми. По данным научно-технической и патентной информации не выявлена заявляемая совокупность признаков, что позволяет сделать предварительный вывод о новизне заявляемого способа. Признак, касающийся использования в качестве объекта исследования содержания фруктозы в клетках растения известен по работе Алешина Е. П. и Воробьева Н. В. Изучение влияния пониженных температур на содержание сахаров в проростках риса с целью разработки методов повышения их жизнеспособности. Тр. Кубанского СХИ. Краснодар, 1975, вып. 98(126), с. 3-8. Однако в известном техническом решении накопление фруктозы в ... |
Еще из этого раздела: 2151493 Установка для гидропонного выращивания растений 2450135 Двигатель самоходной машины 2129787 Инсектицидная композиция 2054862 Гидравлический режущий аппарат 2402189 Роликовая сортировальная машина 2251837 Рабочий орган кустореза 2260932 Способ уборки льна и тресты при неблагоприятных погодных условиях 2264075 Рулонный пресс-подборщик лубяных культур 2195808 Способ хранения корнеплодов, картофеля и капусты 2438305 Способ выращивания цыплят-бройлеров |