Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ получения 2-диметиламино-1,3-бис(фенилтиосульфонил)пропана

 
Международная патентная классификация:       A01N A01P C07C

Патент на изобретение №:      2480000

Автор:      Юнусов Марат Сабирович (RU), Сафиуллин Рустам Лутфуллович (RU), Мустафин Ахат Газизьянович (RU), Абдрахманов Ильдус Бариевич (RU), Хуснутдинов Раиль Альтафович (RU), Галин Фанур Зуфарович (RU), Загидуллин Раис Нуриевич (RU), Нафикова Райля Фаатовна (RU), Афанасьев Федор Игнатьевич (RU)

Патентообладатель:      Учреждение Российской академии наук Институт органической химии Уфимского научного центра РАН (RU)

Дата публикации:      27 Декабря, 2012

Начало действия патента:      24 Июня, 2011

Адрес для переписки:      450054, г.Уфа-54, пр-кт Октября, 71, Учреждение Российской академии наук Институт органической химии Уфимского научного центра РАН

Изобретение относится к синтезу биологически активных соединений - инсектицида: 2-диметил-амино-1,3-бис(фенилтиосульфонил)пропана (банкол). Первоначально получают 2-диметиламино-1,3-дихлорпропан путем взаимодействия 33-38% водного раствора диметиламина (ДМА) с хлористым аллилом (ХА) при мольном соотношении ДМА:ХА, равном 1,1-1,5:1,0 в течение 3-4 часов при температуре 50-55°C с образованием гидрохлорида диметилаллиламина. Его без выделения хлорируют при температуре 7-13°C в течение 8-10 часов с получением хлоргидрата 1-диметиламино-2,3-дихлорпропана (ХГ 1-ДМА-2,3-ДХП). Его, после удаления остаточного хлора, нейтрализуют 44-46% водным раствором щелочи при мольном соотношении ХГ 1-ДМА-2,3-ДХП: щелочь, равном 1:1,25-1,5 при комнатной температуре с образованием 2-диметиламино-1,3-дихлорпропана (2-ДМА-1,3-ДХП). Его отделяют в виде аминного слоя, сушат, растворяют в изопропиловом спирте и конденсируют с бензолтиосульфонатом натрия (БТСФ) при мольном соотношении 2-ДМА-1,3-ДХП:БТСФ, равном 1:2-2,04 в течение 1,5-2,5 часа при температуре 70-79°C. Образовавшиеся кристаллы хлористого натрия отфильтровывают под вакуумом при 70-75°C. Реакционную массу охлаждают до 20-10°C и выделяют целевой продукт фильтрованием. Изобретение позволяет повысить выход продукта и упростить способ его получения. 2 з.п. ф-лы, 2 пр.

Изобретение относится к области синтеза биологически активных соединений, конкретно, к способу получения инсектицида - 2-диметиламино-1,3-бис(фенилтиосульфонил)пропана (банкол, Бенсульбан, Викбенон, рубан), который находит применение как высокоэффективный инсектицид против чешуекрылых и жесткокрылых вредителей сельскохозяйственных культур, в частности против колорадского жука в посевах картофеля [Мельников Н.Н. и др. Пестициды и регуляторы роста растений / Справочник, М.: «Химия», 1995, с.333].

Описано получение банкола путем взаимодействия раствора 1 - диметиламино-2,3-дихлорпропана (1-ДМА-2,3-ДХН) в среде этилового спирта и этилата натрия с бензолтиосульфонатом натрия (БТСФ) в этиловом спирте при 80°C в течение 2 часов. Выделившийся NaCl отфильтровывают, растворитель упаривают, выпавшие кристаллы «Банкола» (т.пл. 82-83°C) выделяют дробной кристаллизацией ввиду хорошей растворимости целевого продукта в этиловом спирте [CH 548381. Verharen zur Herstellung never 2 - Aminopropanverbindungen].

Этот способ в лабораторных условиях был нами опробирован, выход продукта составил 49-51% от теоретического. Недостатком способа является применение спиртового раствора сырья, этилата натрия, последний получают из безводного спирта и металлического натрия, кроме того, 1-диметиламино-2,3-ДХП не выпускается в промышленности. Если суммировать все стадии подготовки сырья и материалов, то получится процесс все-таки довольно сложным (многостадийный) и выход целевого продукта недостаточно высокий.

Описано также получение банкола путем смешивания 1-диметиламино-2,3-дихлорпропана в этиловом спирте с расчетным количеством БТСФ. Смесь выдерживают при кипячении 2 часа. NaCl отфильтровывают, банкол перекристаллизовывают из диэтилового эфира [JP 13755. Способ получения гетероциклических аминосоединений]. Выход целевого продукта 57%. Недостатком способа является применение горючих и легковоспламеняющихся жидкостей и недостаточно высокий выход продукта.

Наиболее близким способом по технической сущности и достигаемому результату является получение банкола с выходом 61-62% от теоретического взаимодействием 1-диметиламино-2,3-ДХП и БТСФ в среде спиртового раствора NaOH при кипячении в течение 2 часов. [Konishi Kazuo. Studies on organic insecticides Part XIII. Sindesus of nereistoxin and related compounds // Agr. and Biol. Chem., 1970, V.34, N.10, p.1549-1560]. Недостатком способа получения банкола является сложность выделения целевого продукта, т.к. в среде едкого натра последний растворяется в спирте и не ясно, как выделять из фильтрата продукт в присутствии едкого натра, а также недостаточно высокий выход продукта.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке усовершенствованного способа получения 2-диметиламино-1,3-бис(фенилтиосульфонил)пропана (банкол) и повышении выхода продукта. Технический результат при использовании заявляемого способа выражается в повышении выхода целевого продукта и упрощении способа его получения.

Вышеуказанный технический результат достигается способом получения 2-диметиламино-1,3-бис(фенилтиосульфонил)пропана взаимодействием 2-диметиламино-1,3-дихлорпропана с бензолтиосульфонатом натрия в присутствии растворителя - изопропилового спирта, особенность которого заключается в первоначальном получении 2-диметиламино-1,3-дихлорпропана (2-ДМА-1,3-ДХП) взаимодействием 33-38% водного раствора диметил-амина (ДМА) с хлористым аллилом (ХА) при мольном соотношении ДМА:ХА, равном 1,1-1,5:1,0, в течение 3-4 часов при температуре 50-55°C с образованием гидрохлорида диметилаллиламина (ДМАА), который без выделения затем хлорируют при 7-13°C в течение 8-10 ч с получением хлоргидрата 1-диметиламино-2,3-дихлорпропана (ХГ 1-ДМА-2,3-ДХП). Последний, после удаления остатков хлора, нейтрализуют 44-46%-ным водным раствором щелочи при мольном соотношении ХГ 1-ДМА-2,3-ДХП: щелочь, равном 1:1,25-1,5, с образованием 2-ДМА-1,3-ДХП (в следствие изомеризации 1-диметиламино-2,3-ДХП), который отделяют в виде аминного слоя, сушат, растворяют в изоприловом спирте и конденсируют с бензолтиосульфанатом натрия при мольном соотношении 2-ДМА-1,3-ДХП:БТСФ, равном 1:2-2,04 в течение 1,5-2,5 часов при температуре 70-79°C. Выделившиеся кристаллы NaCl отфильтровывают под вакуумом при 70-75°C, затем реакционную массу охлаждают до 20-10°C и отфильтровывают выпавшие кристаллы целевого 2-диметиламино-1,3-бис (фенилтиосульфонил)пропана, выход 79-81,5%. Изопропиловый спирт берут в 2,0-2,5 раза больше по отношению к массе исходных соединений. В качестве щелочи используют водный раствор едкого натра или кали.

Схема реакций:

Преимуществами предложенного способа являются:

- доступность реагентов;

- сокращение стадий получения банкола до минимума;

- проведение синтеза банкола в безопасной, гомогенной среде и отсутствие применения легковоспламеняющихся жидкостей;

- повышение выхода продукта за счет применения изопропилового спирта и проведения синтеза в гомогенной фазе.

Сущность изобретения поясняется следующими примерами.

Пример 1. В реактор с перемешивающим устройством загружают 4,95 г (0,11 моль) ДМА в виде 33%-ного водного раствора и дозируют 7,65 г (0,1 моль) хлористого аллила в течение 1 часа, температура (50°C) реакционной смеси поддерживается дозированной подачей хлористого аллила, перемешивают до постоянного значения хлор-иона (2 ч) (по известным методам определения хлоридов). Избыток ДМА удаляют с помощью инертного газа и улавливают водой. Слабый раствор ДМА может быть возвращен в производство ВПК-402. Полученный продукт - гидрохлорид диметилаллил-амина без выделения в свободном виде хлорируют. Реактор дополнительно снабжают резиновым отводом для подачи хлора и при температуре 7°C через барботер подают хлор в течение 8 часов. После окончания хлорирования гидрохлорида ДМАА реакционную массу отдувают азотом в течение 20-30 минут. После удаления остаточного хлора полученный хлоридгидрат 1-ДМА-2,3-ДХП (отсутствие двойной связи определяют методом бромного числа) нейтрализуют 5,0 г (0,125 моль) NaOH в виде 44%-ного водного раствора при комнатной температуре (одновременно происходит нейтрализация ХГ 1-ДМА-2,3-ДХПа и изомеризация его в 2-ДМА-1,3-ДХП). Мольное соотношение ХГ 1-ДМА-2,3-ДХП:NaOH=1:1,25. Реакционную смесь перемешивают в течение 0,5-1 часа и берут пробу на анализ. Для этого пробу обрабатывают 40%-ным водным раствором NaOH, аминный слой выделяют и определяют 2-ДМА-1,3-ДХП на ГЖХ. Реакционную смесь переносят в делительную воронку, отделяют слой 2-ДМА-1,3-ДХПана, сушат и снова загружают в реактор, добавляют 111 мл изопропилового спирта, нагревают до 70°C и дозируют 39,98 г (2,04 моль) бензолтиосульфоната натрия, выдерживают при 79°C в течение 1,5 часа. NaCl отфильтровывают при 70°C под вакуумом. Выделяется расчетное количество NaCl. Оставшуюся массу охлаждают до 10-20°C и выкристаллизовывающиеся светло-желтые кристаллы банкола отфильтровывают под вакуумом и сушат под током азота. Изопропиловый спирт регенерируют перегонкой. Выделяют 34,0 г (79%) продукта, Тпл. 83-83,5°C.

Вычислено, %: S 29,69; N 3,24; C17H 21NS4O4. Найдено, %: S 29,32; N 3,51.

Пример 2. В условиях примера 1 в реактор загружают 6,75 г (0,15 моль) ДМА в виде 38%-ного водного раствора и дозируют 7,65 г (0,1 моль) хлористого аллила и перемешивают при 55°C в течение 4 ч до постоянного значения хлор-иона. Избыток ДМА удаляют с помощью инертного газа и улавливают водой. Полученный гидрохлорид ДМАА хлорируют без выделения в свободном виде при температуре 13°C в течение 10 ч. После окончания хлорирования реакционную массу отдувают азотом в течение 20-30 минут и ХГ 1-ДМА-2,3-ДХПа нейтрализуют 5,85 г (0,15 моль) едкого кали в виде 46%-ного водного раствора при комнатной температуре. Реакционную смесь перемешивают при комнатной температуре в течение 0,5 часа. 2-ДМА-1,3-ДХП отделяют, сушат. Мольное соотношение ХГ 1-ДМА-2,3-ДХП:KOH=1:1,5. Полученный 2-ДМА-1,3-ДХП переводят в реактор, добавляют 140 мл изопропилового спирта и дозируют 39,2 г (0,2 моль) бензолтиосульфоната натрия. Смесь выдерживают при 70°C в течение 2,5 часов. Выпавший NaCl выделяют горячей фильтрацией при 70-75°C под вакуумом. Оставшуюся массу охлаждают до 20-10°C. Выпавшие кристаллы банкола отфильтровывают. Получают 35,1 г (81,5%) продукта, Тпл. 82,5-83,5°C. Вычислено, %: S 29,69; N 3,24; C17H21NS4O4. Найдено, %: S 29,98; N 3,58.

Формула изобретения

1. Способ получения 2-диметиламино-1,3-бис(фенилтиосульфонил)пропана, отличающийся тем, что первоначально получают 2-диметиламино-1,3-дихлорпропан путем взаимодействия 33-38%-ного водного раствора диметиламина (ДМА) с хлористым аллилом (ХА) при мольном соотношении ДМА:ХА, равном 1,1-1,5:1,0, в течение 3-4 ч при температуре 50-55°C с образованием гидрохлорида диметилаллиламина, который без выделения хлорируют при температуре 7-13°C в течение 8-10 ч с получением хлоргидрата 1-диметиламино-2,3-дихлорпропана (ХГ 1-ДМА-2,3-ДХП), который, после удаления остаточного хлора, нейтрализуют 44-46%-ным водным раствором щелочи при мольном соотношении ХГ 1-ДМА-2,3-ДХП: щелочь, равном 1:1,25-1,5, при комнатной температуре с образованием 2-диметиламино-1,3-дихлорпропана (2-ДМА-1,3-ДХП), который отделяют в виде аминного слоя, сушат, растворяют в изопропиловом спирте и конденсируют с бензолтиосульфонатом натрия (БТСФ) при мольном соотношении 2-ДМА-1,3-ДХП:БТСФ, равном 1:2-2,04, в течение 1,5-2,5 ч при температуре 70-79°C, с последующим отфильтровыванием кристаллов хлористого натрия под вакуумом при 70-75°C, охлаждением реакционной массы до 20-10°C и выделением целевого продукта фильтрованием.

2. Способ по п.1, отличающийся тем, что в качестве щелочи используют водный раствор едкого натра или кали.

3. Способ по п.1, отличающийся тем, что изопропиловый спирт берут в 2-2,5 раза больше по отношению к массе исходных соединений.





Популярные патенты:

2129787 Инсектицидная композиция

... (+)-1R, транс-2,2-диметил-3-(2,2-дихлорвинил) циклопропанкарбоксилат (называемый в дальнейшем "бенфлутрином") как имеющий инсекцтицидную активность. Однако, когда бенфлутрин используется в виде инсектицидной композиции для горячего окуривания, трудно получить стабильный инсектицидный эффект в течение длительного периода времени. Заявители настойчиво работали под этой проблемой и, как результат, нашли, что инсектицидная композиция, содержащая бенфлутрин и N-(2-этилгексил)бицикло-[2.2.1] -гепт-5-ен-2,3-дикарбоксимид (называемый в дальнейшем "MGK 264") (указанная композиция, называемая в дальнейшем как "настоящая композиция"), показывает стабильный эффект в течение ...


2260932 Способ уборки льна и тресты при неблагоприятных погодных условиях

... последнее по той причине, что при формировании валка из порций после сушки их в конусах и подборе валка с заматыванием льнопродукции в рулон происходит перепутывание стеблевой массы. После этого на льнозаводе не представляется возможным размотать качественно рулон и сформировать из него для подачи в мяльно-трепальный агрегат слой, в котором все стебли расположены комлями в одну сторону и имеют минимальную растянутость. В настоящее время в нашей стране способ уборки тресты с постановкой льнопродукции в конусы и заматыванием в рулон порций после сушки их в конусах имеет наибольшее распространение, поэтому и снизился значительно выход длинного волокна одновременно с переходом на ...


2414113 Способ и комплекс для обработки зерна, семян или плодоовощной продукции озоном

... продукции может быть проведена эластичной прокладкой. Подача озоногазовой смеси в замкнутый объем может быть осуществлена через гибкие эластичные, озоностойкие рукава в нижней части чехла, а отбор вторичной озоногазовой смеси для повторного ее использования может быть осуществлен через гибкие эластичные, озоностойкие рукава в верхней части чехла.Подача озоногазовой смеси в замкнутый объем может быть осуществлена через гибкие эластичные, озоностойкие рукава в верхней части чехла, а отбор вторичной озоногазовой смеси для повторного ее использования может быть осуществлен через гибкие эластичные, озоностойкие рукава в нижней части чехла.Подача озоногазовой смеси в насыпь ...


2434381 Технологическая линия для приготовления и раздачи влажных кормов

... под действием сил гравитации, происходит просыпание сухого концентрированного корма в спиральный трубопровод 29. В спиральном трубопроводе происходит уменьшение скорости истечения сухого комбикорма. Затем под действием сил гравитации сухой комбикорм попадает на рассекатель 25 (фиг.3), где разделяется на кольцевой поток. Усеченный конус 24 направляет весь поток сухого комбикорма в кольцевой трубопровод 17 (фиг.2, 3) и предотвращает накапливание сухого комбикорма на верхней части кольцевого трубопровода 17 (фиг.2, 3). Затем под действием сил гравитации сухой комбикорм проходит кольцевой трубопровод 17.Одновременно включают электромагнитный клапан 30 (фиг.2), электромагнитный клапан ...


2307495 Пневматический высевающий аппарат

... валу 2 установлен и зафиксирован высевающий диск 3 с дозирующими элементами 4. Они изготовлены в два ряда, таким образом, что их центры равномерно распределены по двум концентрическим окружностям, причем радиус внешней окружности больше радиуса внутренней на величину, равную максимальному диаметру дозирующих элементов 4, а количество дозирующих элементов 4 во внешнем ряду равно количеству их во внутреннем ряду. Кроме того, дозирующие элементы 4 внутреннего ряда сдвинуты относительно дозирующих элементов 4 внешнего ряда на радиальный угол, равный половине радиального угла между дозирующими элементами 4 внешнего ряда. В корпусе 1 расположена семенная камера 5, а также две ...


Еще из этого раздела:

2267261 Молочно-доильный комплекс

2228022 Способ ведения виноградных кустов

2157064 Способ промышленного производства миниклубней картофеля в искусственном климате культивационного сооружения (фитотроне)

2171570 Устройство для группового учета надоев молока при доении

2197082 Установка для охлаждения молока с использованием естественного холода

2216903 Устройство для отделения плодов от ветвей

2088063 Широкозахватный сельскохозяйственный агрегат

2080765 Комбайн для уборки овощей

2460269 Малогабаритный картофелеуборочный комбайн

2150193 Установка для бесфреонового охлаждения молока