Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ получения масс для лепки с биоцидными свойствами

 
Международная патентная классификация:       A01N B82B C08L

Патент на изобретение №:      2473216

Автор:      Мащенко Владимир Игоревич (RU), Алексеев Антон Николаевич (RU), Картавенко Татьяна Владимировна (RU), Оленин Александр Владимирович (RU)

Патентообладатель:      Мащенко Владимир Игоревич (RU)

Дата публикации:      27 Января, 2013

Начало действия патента:      27 Мая, 2011

Адрес для переписки:      121151, Москва, ул. Студенческая, 16, кв.63, В.И. Мащенко

Изобретение относится к способу получения масс для лепки с биоцидными свойствами. Смешивают органосилоксан с борной кислотой и кислотой Льюиса, нагревают полученную смесь и вводят биоцидную добавку и, по крайней мере, одну добавку, выбранную из группы, включающей наполнитель, пигмент, пластификатор. Борную кислоту берут в количестве 4-40 мас.ч. на 100 мас.ч. органосилоксана, кислоту Льюиса берут в количестве 0,001-3 мас.ч. на 100 мас.ч. органосилоксана, в качестве биоцидной добавки используют наночастицы серебра в количестве 0,00001-0,1 мас.ч. на 100 мас.ч. органосилоксана. Наночастицы серебра вводят перед нагревом, а нагрев осуществляют сверхвысокочастотным излучением до температуры 100-50°С в течение 10-90 минут. Изобретение позволяет упростить известный способ получения масс для лепки и повысить в 40-70 раз ее биоцидные свойства. 1 табл., 18 пр.

Изобретение относится к области способов получения масс для лепки с биоцидными свойствами на основе боросилоксанов, которые могут быть использованы в качестве изделий, развивающих моторику рук у взрослых и детей и одновременно дезинфицирующих их руки. Такие массы часто называют «жвачка для рук» или «прыгающая замазка».

Боросилоксаны являются известным классом соединений органосилоксанов с различными соединениями бора ["Силоксановая связь" Воронков М.Г., Милешкевич В.П. // Новосибирск, Наука, 1976 г., 413 с.].

Известен способ получения массы для лепки с биоцидными свойствами путем смешения боросилоксана с биоцидной добавкой (хлорфениловым эфиром) (патент США 6391941, 2002 кл. 523/122).

Наиболее близким к заявляемому является известный способ получения масс для лепки с биоцидными свойствами путем смешения органосилоксана (100 мас.ч.) с борной кислотой (3 мас.ч.) и кислотой Льюиса (безводный хлорид железа) (0.005 мас.ч.), нагрева полученной смеси вначале в вакууме, затем на воздухе и введения биоцидной добавки (дезинфицирующего средства) и, по крайней мере, одной добавки, выбранной из группы, включающей наполнитель (0,2 мас.ч. диоксида кремния и 22 мас.ч. сульфата бария), пигмент и пластификатор (патент США 3677997, 1972) - прототип. В известном способе биоцидную добавку вводят после нагрева смеси органосилоксана с борной кислотой и кислотой Льюиса, приводящего к образованию боросилоксана, и нагрев осуществляют традиционным методом в течение более чем 20 часов.

Недостатком известного технического решения является его относительная сложность, обусловленная длительностью процесса получения массы для лепки и необходимостью проведения первоначального нагрева в условиях вакуума и относительно невысокие биоцидные свойства у полученных масс.

Технической задачей изобретения является упрощение способа за счет устранения нагрева в условиях вакуума и сокращения длительности процесса получения массы для лепки и повышение биоцидных свойств у массы для лепки.

Предварительно были проведены эксперименты с различными биоцидными добавками и различными соотношениями компонентов, в результате которых было выявлено, что технический результат достигается только тогда, когда в известном способе получения масс для лепки с биоцидными свойствами путем смешения органосилоксана с борной кислотой и кислотой Льюиса, нагрева полученной смеси и введения биоцидной добавки и, по крайней мере, одной добавки, выбранной из группы, включающей наполнитель, пигмент, пластификатор, борную кислоту берут в количестве 4-;-40 мас.ч. на 100 мас.ч. органосилоксана, кислоту Льюиса берут в количестве 0,001-;-3 мас.ч. на 100 мас.ч. органосилоксана, в качестве биоцидной добавки используют наночастицы серебра в количестве 0,00001-;-0,1 мас.ч. на 100 мас.ч. органосилоксана, наночастицы серебра вводят перед нагревом, а нагрев осуществляют сверхвысокочастотным излучением до температуры 100-;-250°C в течение 10-;-90 минут (мин).

В предлагаемом техническом решении в качестве органосилоксана можно использовать любой органосилоксан, например, декаметилциклопентасилоксан, диметилсилоксан с концевыми гидроксильными группами, полиэтилсилоксановую жидкость и т.д.

В качестве кислоты Льюиса, выполняющей роль катализатора при получении боросилоксана, можно использовать, например, хлорид трехвалентного железа, хлорид цинка, хлорид алюминия, смесь таких солей и т.д.

В качестве наполнителя можно использовать, например, аэросил, тальк, каолин и т.д.

В качестве пигмента можно использовать различные неорганические или органические пигменты, например, такие как титановые белила, железоокисный пигмент, пигмент красный прочный (C.I.Pigment Red 166) и др..

В качестве пластификатора можно использовать, например, производные касторового масла, олеиновую кислоту, стеарат железа и т.д.

Наполнитель, пигмент и пластификатор можно вводить как до нагрева органосилоксана с борной кислотой и кислотой Льюиса, так и после нагрева. В массу для лепки можно вводить только наполнитель, только пигмент, только пластификатор, или использовать их любые сочетания. Количество введенного наполнителя может варьироваться в широких пределах и составлять, например, от 1 до 40 мас.ч. на 100 мас.ч. органосилоксана. Количество введенного пигмента может варьироваться в широких пределах и составлять, например, от 0,1 до 5 мас.ч. на 100 мас.ч. органосилоксана. Количество введенного пластификатора может варьироваться в широких пределах и составлять, например, от 0,1 до 5 мас.ч. на 100 мас.ч. органосилоксана. Количества вводимых наполнителя, пигмента и пластификатора являются традиционными для наполненных систем и не оказывают существенного влияния на биоцидные свойства масс для лепки.

Оптимальное количество вводимой борной кислоты было найдено экспериментально. При этом было установлено, что при содержании борной кислоты менее 4 мас.ч. на 100 мас.ч. органосилоксана консистенция полученного образца является слишком жидкой и липкой, что не позволяет его использовать в качестве массы для лепки. При содержании борной кислоты более 40 мас.ч. на 100 мас.ч. органосилоксана консистенция полученного образца является слишком жесткой, что не позволяет его использовать в качестве массы для лепки.

Оптимальное количество вводимой кислоты Льюиса также было найдено экспериментально. При этом было установлено, что при содержании кислоты Льюиса менее 0,001 мас.ч. на 100 мас.ч. органосилоксана возрастает длительность процесса получения массы для лепки. При содержании кислоты Льюиса более 3 мас.ч. на 100 мас.ч. органосилоксана у массы для лепки появляется неприятный запах.

Наночастицы серебра можно использовать в качестве их коллоидного раствора в воде или в органическом растворителе (изооктан, октан, декан и т.д.). Средний размер наночастиц серебра в коллоидном растворе может составлять от 2 до 100 нм. Экспериментально было установлено, что если в качестве биоцидной добавки использовать не наночастицы серебра, а частицы серебра с размером больше нанометрических, то биоцидные свойства у масс для лепки резко ухудшаются.

Оптимальное количество вводимых наночастиц серебра было найдено экспериментально. При этом было установлено, что при содержании наночастиц серебра менее 0,00001 мас.ч. на 100 мас.ч. органосилоксана ухудшаются биоцидные свойства у массы для лепки. Введение наночастиц серебра в количествах, больших 0,1 мас.ч. на 100 мас.ч. органосилоксана, не приводит к дальнейшему повышению биоцидных свойств у массы.

Нами было установлено, что если наночастицы серебра вводить перед нагревом органосилоксана с борной кислотой и кислотой Льюиса, то биоцидные свойства массы неожиданно оказываются существенно более лучшими, чем, когда наночастицы серебра были введены после нагрева. При использовании в качестве биоцидной добавки вместо наночастиц серебра других известных биоцидных добавок такой эффект не наблюдается.

Следует отметить, что введение всех компонентов в смесь должно сопровождаться перемешиванием смеси. Нагревание смеси можно проводить с перемешиванием и без перемешивания. Перемешивание можно проводить различными способами, например, с использованием механических мешалок различных конструкций, вальцев и т.д.

Нами было экспериментально установлено, что если при получении массы для лепки нагрев осуществлять сверхвысокочастотным (синоним - микроволновым) излучением, то это позволяет существенно упростить способ получения массы для лепки за счет сокращения длительности процесса и устранение необходимости первоначального нагрева в условиях вакуума.

В предлагаемом техническом решении в качестве источника сверхвысокочастотного излучения можно использовать СВЧ-печи различных марок и конструкций, обычно применяемых для бесконтактного нагрева тел.

Оптимальная продолжительность нагрева зависит от мощности источника СВЧ-излучения и может составлять от 10 до 90 мин. При продолжительности нагрева менее 10 мин консистенция массы для лепки оказывается слишком жидкой. Нагрев системы более 90 мин приводит к появлению у массы для лепки неприятного запаха.

Оптимальный интервал температур нагрева был установлен экспериментально. При этом было обнаружено, что если нагрев осуществлять при температуре ниже 100°C, значительно увеличивается длительность процесса. Нагрев при температуре выше 250°C приводит к появлению у полученного образца неприятного запаха.

Предлагаемая масса представляет собой резиноподобную субстанцию, которая легко мнется и тянется, легко принимает любую форму в процессе лепки, прыгает, как мячик при ударе, растекается, рвется, но при этом не пачкает руки.

Примеры получения заявленной и контрольных масс для лепки приведены ниже.

Во всех примерах проверку биоцидных свойств композиций проводят в соответствии с нормативными документами: «Методы испытаний дезинфекционных средств для оценки их эффективности и безопасности», Москва, 1998 г. и «Нормативные показатели безопасности эффективной дезинфекции средств, подлежащих контролю при проведении обязательной сертификации 01-12/75-97».

В качестве тест микроорганизмов используют бактерии Staphylococcus aureus, Escherichia coli, Candida albicans и Trichophyton gypseum, грибы Mycobacterium B5.

В качестве тест-объектов используют чашки Петри, покрытые массами для лепки, обсемененные тест-микроорганизмами, с плотностью обсеменения (1,6±0,4)×105 колониеобразующих единиц (КОЕ)/см2 после выдерживания образцов в течение 60 мин. Подсчитывают количество микроорганизмов N (КОЕ)/см 2.

Преимущества предлагаемого способа иллюстрируют следующие примеры.

Пример 1.

В химическом стакане смешивают 100 грамм (г) (100 мас.ч.) декаметилциклопентасилоксана с 10 г (10 мас.ч.) борной кислоты, 1 г (1 мас.ч.) кислоты Льюиса, в качестве которой используют хлорид алюминия, и 25 мл коллоидного раствора наночастиц серебра в изооктане с концентрацией 4 г/литр (0,1 мас.ч). После этого стакан со смесью помещают в СВЧ-печь и проводят нагрев сверхвысокочастотным излучением в течение 60 мин при температуре 150°C при постоянном перемешивании с использованием верхнеприводной механической мешалки. Затем стакан извлекают из СВЧ-печи. Содержимое стакана охлаждают до комнатной температуры, после чего в смесь вводят 3 г (3 мас.ч.) наполнителя, в качестве которого используют аэросил, и перемешивают до однородного состояния. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 2.

Опыт проводят аналогично примеру 1, однако берут 100 г (100 мас.ч.) диметилсилоксана с концевыми гидроксильными группами, 4 г (4 мас.ч.) борной кислоты, 0,001 г (0,001 мас.ч.) кислоты Льюиса, в качестве которой используют хлорид цинка, и 2,5 мл коллоидного раствора наночастиц серебра в воде с концентрацией 0,4 г/литр (0,001 мас.ч.), нагрев проводят в течение 90 мин при температуре 100°C, после чего в смесь вводят 1 г (1 мас.ч.) наполнителя, в качестве которого используют тальк и 1 г (1 мас.ч.) пластификатора, в качестве которого используют олеиновую кислоту. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 3.

Опыт проводят аналогично примеру 1, однако берут 100 г (100 мас.ч.) полиэтилсилоксановой жидкости, 40 г (40 мас.ч.) борной кислоты, 3 г (3 мас.ч.) кислоты Льюиса, в качестве которой используют хлорид трехвалентного железа, и 0,25 мл коллоидного раствора наночастиц серебра в декане с концентрацией 0,04 г/литр (0,00001 мас.ч.), нагрев проводят в течение 10 мин при температуре 250°C, после чего в смесь вводят 40 г (40 мас.ч.) наполнителя, в качестве которого используют каолин, и 1 г (1 мас.ч.) пигмента, в качестве которого используют титановые белила. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 4

Опыт проводят аналогично примеру 1, однако наночастицы серебра вводят в виде коллоидного раствора в октане, причем после нагрева в смесь дополнительно вводят 5 г (5 мас.ч.) пластификатора, в качестве которого используют производное касторового масла и 5 г (5 мас.ч.) пигмента, в качестве которого используют красный железоокисный пигмент. Получают массу для лепки красного цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 5

Опыт проводят аналогично примеру 1, однако смесь во время нагрева не перемешивают. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 6

Опыт проводят аналогично примеру 1, однако перед нагревом вводят 0,1 г (0,1 мас.ч.) пластификатора, в качестве которого используют стеарат железа и 0,1 г (0,1 мас.ч.) пигмента, в качестве которого используют пигмент красный прочный (C.I.Pigment Red 166). Получают массу для лепки красного цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 7

Опыт проводят аналогично примеру 1, однако наполнитель вводят перед нагревом. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 8

Опыт проводят аналогично примеру 2, однако наполнитель не вводят. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 9

Опыт проводят аналогично примеру 3, однако наполнитель не вводят. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 10

Опыт проводят аналогично примеру 6, однако наполнитель не вводят. Получают массу для лепки красного цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 11

Опыт проводят аналогично примеру 9, однако пигмент вводят до нагрева. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 12

Опыт проводят аналогично примеру 8, однако пластификатор вводят до нагрева. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 13

Опыт проводят аналогично примеру 3, однако наполнитель и пигмент вводят до нагрева. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 14

Опыт проводят аналогично примеру 2, однако наполнитель и пластификатор вводят до нагрева. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 15

Опыт проводят аналогично примеру 4, однако наполнитель, пигмент и пластификатор вводят до нагрева. Получают массу для лепки красного цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 16

Опыт проводят аналогично примеру 4, однако наполнитель и пигмент вводят до нагрева, а пластификатор после нагрева. Получают массу для лепки красного цвета. Биоцидные свойства полученной массы для лепки приведены в таблице. Пример 17 (прототип)

В химическом стакане смешивают 100 г (100 мас.ч.) диметилсилоксана с концевыми гидроксильными группами, 3 г (3 мас.ч.) борной кислоты, 0,005 г (0,005 мас.ч.) кислоты Льюиса, в качестве которой используют хлорид трехвалентного железа, и нагревают под вакуумом (20 мм рт.ст.) при 70°C в течение 5 часов, затем при атмосферном давлении нагревают при 150°C в течение 15 часов. После этого в полученную смесь добавляют 0,2 г (0,2 мас.ч.) пластификатора, в качестве которого используют олеиновую кислоту, и наполнитель, представляющий из себя смесь 6,57 г (6,57 мас.ч.) аэросила-300 и 22 г (22 мас.ч.) сульфата бария и 0,1 г (0,1 мас.ч.) биоцидной добавки, в качестве которой используют хлоргексидин. Затем полученную смесь перемешивают. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Пример 18 (контрольный)

Опыт проводят аналогично примеру 2, однако коллоидный раствор наночастиц серебра в воде вводят после нагрева. Получают массу для лепки белого цвета. Биоцидные свойства полученной массы для лепки приведены в таблице.

Таким образом, из приведенных примеров действительно видно, что предложенный способ получения масс для лепки с биоцидными свойствами действительно существенно упрощает известный способ получения масс для лепки за счет устранения нагрева в условиях вакуума и сокращения длительности процесса получения масс с 20 часов (прототип) до 10 -;- 90 мин. Кроме того, предложенный способ действительно повышает в 40 -;- 70 раз биоцидные свойства у массы для лепки.

Таблица Эффективность обеззараживания поверхностей, контаминированных бактериями и грибами, массами для лепки с биоцидными свойствами. Образцы масс, полученные в примерах, Тест-микроорганизмы и их исходная концентрация, КОЕ/см Staphylococcus aureus, 1,6×105 Escherichia coli, 1,4×105 Candida albicans, 1,9×105 Trichophyton gypseum, 1,5×105 Mycobacterium B5 1,7×105 Концентрация микроорганизмов после контакта с массой для лепки, КОЕ/см2 12±1 1±12±1 0 02 4±2 3±24±2 2±1 2±1 39±3 7±36±2 7±2 8±2 42±1 2±12±1 1±1 1±1 52±1 1±12±1 0 06 3±1 2±12±1 1±1 1±1 72±1 1±12±1 0 08 3±2 3±23±2 2±1 2±1 97±3 6±36±2 6±2 7±2 103±1 2±1 2±12±1 1±1 11 7±36±3 6±3 6±26±2 12 3±22±2 3±2 3±12±1 13 7±38±3 5±2 6±27±2 14 5±24±2 3±2 2±22±1 15 3±22±1 3±1 1±11±1 16 2±13±1 1±1 2±11±1 17, прототип 360±30 490±30330±30 360±40 470±30 18, контрольный 30±433±4 29±3 30±331±3

Формула изобретения

Способ получения масс для лепки с биоцидными свойствами путем смешения органосилоксана с борной кислотой и кислотой Льюиса, нагрева полученной смеси и введения биоцидной добавки и, по крайней мере, одной добавки, выбранной из группы, включающей наполнитель, пигмент, пластификатор, отличающийся тем, что борную кислоту берут в количестве 4-40 мас.ч. на 100 мас.ч. органосилоксана, кислоту Льюиса берут в количестве 0,001-3 мас.ч. на 100 мас.ч. органосилоксана, в качестве биоцидной добавки используют наночастицы серебра в количестве 0,00001-0,1 мас.ч. на 100 мас.ч. органосилоксана, наночастицы серебра вводят перед нагревом, а нагрев осуществляют сверхвысокочастотным излучением до температуры 100-250°С в течение 10-90 мин.





Популярные патенты:

2209542 Контейнер

... проушины (см., например, Пладис Ф. А. и др. Контейнеры. Справочник. - М.: Машиностроение, 1981, с. 48). При хранении в данном контейнере пищевых продуктов не обеспечивается их сохранность. Известен также контейнер по а.с. 1166726, A 01 F 25/14, 1985, содержащий корпус с основанием, боковыми стенками и крышкой, а также установленную в корпусе перфорированную емкость для пищевых продуктов. Недостатками данного устройства являются невозможность создания внутри контейнера регулируемой консервационной газовой среды, а также невозможность уменьшения габаритов контейнера при хранении и транспортировке последнего в порожнем положении. Задачей изобретения является повышение ...


2090040 Машина для возделывания корнеклубневых культур

... картофеля; агрегатируется и может работать только с тракторами, оборудованными валом отбора мощности (ВОМ); имеет большие габариты и массу, ухудшающие его маневренность при работе и при транспортировке, а также требует затрат большого количества энергии. Комбайн КПК-3, принятый за прототип [1, с. 190-192] обеспечивает уборку трех рядков картофеля на легких и средних почвах, отделение клубней от примесей и подачу их в бункер. В этом комбайне технологическая линия аналогична линии комбайна ККУ-2. Отличие составляют установленные над лемехами и над первым прутковым элеватором шнеки и редкопрутковый транспортер, на котором отделяются клубни и остатки почвы от ботвы и других ...


2171570 Устройство для группового учета надоев молока при доении

... возрастает действующая на опорные пружины сила, при достижении заданной величины которой срабатывает датчик контроля положения мерного резервуара. Происходит опорожнение мерного резервуара. Устройство обеспечивает повышение точности дозирования порций молока. 2 ил. , ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Изобретение относится к сельскому хозяйству, в частности к устройствам для группового учета надоев молока. Известно устройство для группового учета надоев молока с поплавком, расположенным в мерной камере (Болотин В.М., Винников И.К., Золотусский Ю.Л., Минкович Т. А. , Розенберг А.М. Счетчик молока. А.С. N 847051, кл. G 01 F 13/00). Дозатор с колоколообразным ...


2165141 Тепличный гидропонный комплекс

... рама 4, залитая бетоном, образующим бетонное половое покрытие 5. Внутри каркаса установлены две перегородки 6, преимущественно из фанеры, которые образуют вегетационные отсеки 7 с установками для выращивания растений 8 и технологический отсек 9. В технологическом отсеке 9 размещены блоки управления установками для выращивания растений 8 и вспомогательные устройства обслуживания, например энергетический блок электрических силовых цепей, поддон с дезинфицирующим раствором для обработки подошв обуви обслуживающего персонала (операторов), шкафы для хранения спецодежды, осветительные приборы для обслуживающего персонала и др. (на чертежах не показаны). Наружная дверь 10, ...


2421109 Способ роспуска закристаллизовавшегося меда и устройство для его осуществления

... вращения ротора и СВЧ-генератора (Патент РФ на изобретение 2014781, МПК А01К 59/04, дата публ. 30.06.94 г.). Наиболее близким аналогом к способу в предложенном в качестве изобретения техническом решении является «Способ роспуска закристаллизовавшегося меда», включающий фиксирование емкости с медом в наклонно-опрокинутом положении, вследствие чего закристаллизовавшийся мед, нагреваемый воздействующим на него снизу микроволновым СВЧ-излучением, приобретает текучесть (или размягчается, разжижается) и под действием силы тяжести стекает в приемную тару (Филиппов Р.Л. Роспуск и откачка закристаллизовавшегося меда. «Пчеловодство», 1983, 9, стр.30-31).Однако ...


Еще из этого раздела:

2079266 Устройство для гранулирования кормов

2059362 Установка для выращивания мидий

2264065 Способ возделывания сельскохозяйственных культур на корм

2201910 Устройство для ферментационной обработки жидкого навоза

2126616 Устройство управления навесной системой трактора

2050096 Мотокосилка

2028763 Измельчитель древесной поросли

2454055 Устройство для ротационного внутрипочвенного рыхления с механическим приводом

2280351 Установка для скашивания сорной растительной массы с берм и откосов канала

2076603 Способ повышения урожайности сельскохозяйственных культур