Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ снабжения теплицы тепловой энергией и углекислым газом

 
Международная патентная классификация:       A01G

Патент на изобретение №:      2023387

Автор:      Аминов Рашид Зарифович, Остапенко Виктор Антонович, Доронин Михаил Сергеевич, Курилко Елена Юрьевна

Патентообладатель:      Аминов Рашид Зарифович, Остапенко Виктор Антонович, Доронин Михаил Сергеевич, Курилко Елена Юрьевна

Дата публикации:      30 Ноября, 1994

Адрес для переписки:      подача заявки28.06.1991 публикация патента30.11.1994


Изображения





Изобретение относится к сельскому хозяйству, в частности к овощеводству защищенного грунта. Перед подачей углекислого газа в теплицу осуществляют его многоступенчатое сжатие с промежуточным охлаждением в водоуглекислотных теплообменниках, аккумулирование сжиженного углекислого газа и его хранение, при этом после хранения осуществляют нагрев его в солнечном коллекторе для получения углекислотного пара, который направляют в углекислотную турбину с регулируемым давлением на выхлопе турбин. 1 ил.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к сельскому хозяйству, в частности к овощеводству защищенного грунта.

В сельском хозяйстве при производстве овощей в защищенном грунте известны способы подкормки растений в теплицах углекислым газом, получаемым из дымовых газов, образующихся при сжигании топлива [1]. Но в них не учитывается изменения потребности растений в углекислом газе в течение года и суток.

Наиболее близким техническим решением является способ подкормки растений защищенного грунта двуокисью углерода с использованием отходящих газов котельных, заключающийся в том, что отходящие газы пропускают через катализатор и подают по системе трубопроводов в теплицу. При этом катализатор располагают в высокотемпературной зоне между конвективными пучками котла.

Однако известный способ имеет следующие недостатки. Полученный углекислый газ используется нерационально, так как не учитывает изменения потребности в нем в течение года и суток.

Целью изобретения является обеспечение суточного и сезонного регулирования подкормки растений углекислым газом, а также снижение расхода теплоты на отопление.

Цель достигается тем, что перед подачей углекислого газа в теплицу осуществляют его многоступенчатое сжатие с промежуточным охлаждением в водоуглекислотных теплообменниках, аккумулирование сжиженного углекислого газа и его хранение, при этом после хранения осуществляют нагрев его в солнечном коллекторе для получения углекислотного пара, который направляют в углекислотную турбину с регулируемым давлением на выхлопе турбины. Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного тем, что при помощи аккумулирования сжиженного углекислого газа и его хранения перед подачей в теплицу, а также нагрева его в солнечном коллекторе после хранения осуществляется суточное и сезонное регулирование растений углекислым газом, обеспечение оптимального температурного режима внутри теплицы, а также экономия теплоты на ее отопление.

На чертеже представлена схема снабжения теплицы тепловой энергией и углекислым газом.

После получения углекислого газа из отходящих дымовых газов в установке радиационно-химической очистки 1 он подвергается многократному охлаждению в водоуглекислотных охладителях 2, 3, 4, 5 и сжатию в компрессорах 6, 7, 8. Сжиженный углекислый газ подается в аккумулятор 9 углекислого газа, откуда в летний период он подается насосом 10 в солнечный коллектор 11, а зимой - в подогреватель 12 углекислого газа. После нагрева в солнечном коллекторе или в подогревателе углекислого газа он направляется в голову углекислотной турбины 13, имеющей регулируемые отборы. После расширения в углекислотной турбине охлажденный углекислый газ направляется в теплицу 14. Углекислый газ может поступать в теплицу, минуя аккумулятор углекислотного газа после охлаждения в водоуглекислотном охладителе 15.

Использование предлагаемого способа снабжения теплицы тепловой энергией и углекислым газом обеспечивает по сравнению с существующими способами следующие преимущества: снижение расхода теплоты на отопление; обеспечивается суточное и сезонное регулирование подкормки растений в теплице углекислым газом; оптимальный температурный режим в теплице; снижение вредного экологического воздействия выбросов ТЭС за счет углекислого газа.

ФОРМУЛА ИЗОБРЕТЕНИЯ

СПОСОБ СНАБЖЕНИЯ ТЕПЛИЦЫ ТЕПЛОВОЙ ЭНЕРГИЕЙ И УГЛЕКИСЛЫМ ГАЗОМ, включающий получение углекислого газа из отходящих дымовых газов, его очистку в установке радиационно-химической очистки и подачу в теплицу, отличающийся тем, что, с целью обеспечения суточного и сезонного регулирования подкормки растений углекислым газом, а также снижения расхода теплоты на отопление, перед подачей углекислого газа в теплицу осуществляют его многоступенчатое сжатие с промежуточным охлаждением в водоуглекислотных теплообменниках, аккумулирование сжиженного углекислого газа и его хранение, при этом после хранения осуществляют нагрев его в солнечном коллекторе для получения углекислого пара, который направляют в углекислую турбину с регулируемым давлением на выхлопе турбины.



Популярные патенты:

2023363 Пневматическая сеялка

... расположенные поперек продольной оси сеялки материалопроводы, внутренние концы которых сообщены с питателем и источником сжатого воздуха, а наружные содержат распылители, оси которых направлены вдоль продольной оси материалопроводов, расположенные в центральной части сеялки распылители выполнены спаренными, причем составляющие каждую пару распылители направлены в противоположные стороны, а количество пар распылителей определяется выражением n = - 1, , где n - количество пар распылителей; Вр, Вк - соответственно рабочая ширина захвата и конструктивная ширина сеялки; h - интервал, с которым наружные концы смежных материалопроводов отстоят друг от друга по ширине сеялки. ...


2120709 Рама плуга

... зависит от расстояния между корпусами по длине диагонального бруса L1 и определяется соотношением: t= (0,007-0,015)L1. В целях достижения надежной связи элемента жесткости с продольным и диагональным брусьями его длина определяется соотношением: L2 = (0,4-1,1)L. На фиг. 1 изображен общий вид рамы плуга - вид в плане. На фиг. 2 изображены поперечные сечения диагонального бруса с закрепленными на нем элементами жесткости, выполненными из профилей различных вариантов. Рама плуга состоит из соединенных между собой поперечного 1, продольного 2, диагонального 3 брусьев и элемента жесткости 4. На диагональном брусе 3, в том числе и на его консольной части 5, закреплены корпуса плуга. В ...


2272840 Способ молекулярного маркирования пола хмеля обыкновенного (humulus lupulus l)

... патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 10.03.2007 Извещение опубликовано: 27.06.2008        БИ: ...


2411718 Устройство для внутрипочвенного импульсного дискретного полива растений

... отверстия 12 на цилиндрической поверхности внутреннего конца выдвижного шприца 10, привод которого выполняют линейным реверсивным сервоприводом 13, 15 выдвижного шприца 10.По фиг.1 в позиции 7.1 диск 5 гидравлически соединен с блоком подачи поливной воды 6. Вода под давлением из блока подачи поливной воды 6 поступает во внутреннюю полость диска 5.Далее по фиг.2 вода под давлением через внутреннюю полость диска 5, канал упругой эластичной муфты 9, боковое отверстие 12 на цилиндрической поверхности внутреннего конца выдвижного шприца 10, внутреннюю полость выдвижного шприца 10 поступает внутрь почвы.По фиг.1 в позиции 7.1 начинается выполнение дискретного импульса полива из ...


2250583 Агрегат дернинный комбинированный

... прикатывающими катками.Повышение качества обработки почвы фрезерными секциями достигается за счет того, что исключаются вырывы кусков дернины из краев обрабатываемой полосы, так как подпружиненная секция рабочих органов, надрезая дернину, формирует вертикальные стенки полосы.Улучшение водно-воздушного режима почвы достигается за счет того, что щелерезы-камнеудалители нарезают в почве щели, обеспечивающие нужный для кормовых трав водный, воздушный и тепловой режим.Повышение надежности машины происходит в результате значительного уменьшения количества поломок фрезерного рабочего органа из-за камней или посторонних предметов, так как щелерезы-камнеудалители извлекают их на поверхность и ...


Еще из этого раздела:

2449809 Дезинфицирующее средство

2482660 Способ выращивания рапса ярового на семена

2434381 Технологическая линия для приготовления и раздачи влажных кормов

2160981 Способ создания плантаций солодки голой на обесструктуренных почвах в орошаемом земледелии

2423042 Электронно-оптический способ регулирования технологии производства агропродукции

2414114 Зерноуборочный комбайн

2206985 Упряжь для собак

2175477 Способ борьбы с тлями

2229127 Способ испытания растущих деревьев после рубок прореживания и проходных

2053661 Устройство для сколачивания ульевых рамок