Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Биоматериал аллоплант для регенеративной хирургии

 
Международная патентная классификация:       A01N A61L

Патент на изобретение №:      2189257

Автор:      Мулдашев Э.Р., Муслимов С.А., Вялков В.А., Галимова В.У., Нигматуллин Р.Т., Салихов А.Ю., Сельский Н.Е., Кийко Ю.И., Шангина О.Р., Булатов Р.Т., Мусина Л.А., Хасанов Р.А., Кийко М.Ю.

Патентообладатель:      Хуснутдинов Анис Хатыпович

Дата публикации:      20 Сентября, 2002

Начало действия патента:      10 Октября, 2001

Адрес для переписки:      105205, Москва, ул.Федина, 3, кв.27, Ю.И.Кийко


Изображения





Изобретение относится к области медицины. Решаемая задача заключается в создании нового биоматериала для регенеративной хирургии с предельно низкими антигенными свойствами при сохранении биопластических и физико-механических свойств исходных донорских тканей, биоматериала, обеспечивающего селективный рост тканей на месте имплантации без признаков рубцевания или инкапсуляции, а также обратного развития поствоспалительных фиброзных и дегенеративно-дистрофических изменений в тканях. Изобретение заключается в том, что в новом биоматериале донорская соединительная ткань на 70% соответствует фиброструктуре замещаемой ткани, а в волокнистых компонентах донорской соединительной ткани на 80-90% разблокированы химические связи протеогликанов и гликопротеинов, структурированных в коллагеновых волокнах, и частично элюминированы из пучков волокон гликозаминогликаны до остаточного содержания, более или равного 50%. Кроме того, в биоматериале для регенерации плотной оформленной соединительной ткани используют донорскую ткань с преимущественным содержанием гиалуроновой кислоты во внеклеточном матриксе, в биоматериале для регенерации рыхлой соединительной ткани используют донорскую ткань с минимальным содержанием гиалуроновой кислоты, в биоматериале для регенерации эпителиальной ткани используют донорскую ткань с преимущественным содержанием гепарансульфата, в биоматериале для формирования богато-сосудистого регенерата используют донорскую ткань с преимущественным содержанием хондротроитинсульфата. При коррекции фиброзных и дегенеративных дистрофических изменений в тканях используют диспергированную форму, измельченную до порошкообразного состояния. Сложные анатомические дефекты восстанавливают комбинированными донорскими тканями в различной их пропорции и геометрической форме. Биоматериал обеспечивает получение нетоксичных трансплантатов. 6 з.п.ф-лы, 1 табл.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к медицине, а именно к созданию нового биоматериала, являющегося аллогенным тканевым трансплантатом, для регенеративной хирургии.

Большинство из известных в настоящее время биоматериалов (тканевых трансплантатов) готовят из донорских тканей (сухожилия, хрящ, фасции, кость) и используют для замещения дефектов, образующихся вследствие иссечения патологически измененных тканей или травмы. Основными факторами, влияющими на результаты операций, являются антигенные свойства трансплантатов, из-за которых в организме реципиента развивается в той или иной степени иммунное воспаление, как отражение реакции тканевой несовместимости. Снижение антигенных свойств трансплантатов достигается с помощью предварительной обработки донорских тканей и консервирования.

Известные в настоящее время биоматериалы (трансплантаты) получают в результате обработки исходной донорской ткани физическими или химическими методами.

Из физических методов известны глубокое замораживание и лиофилизация, рассчитанные на максимальное сохранение нативной структуры тканей и их приживление после пересадки (Коваленко П.П. Основы трансплантологии.- Ростов-на-Дону: Изд. Ростовского университета. - 1975, - 180 с.). При глубоком замораживании и лиофилизации происходит некоторое снижение антигенных свойств трансплантатов, поэтому при пересадке криоконсервированных и лиофилизированных тканей не происходит их отторжения.

Недостатком является то, что антигены главного комплекса гистосовместимости сохраняются, что часто приводит к относительно быстрой резорбции трансплантата или формированию на его месте грубоволокнистого (рубцового) регенерата, вследствие развития в той или иной степени иммунного воспаления.

Методы химической обработки следует считать более эффективными, так как они позволяют решать две задачи: 1) более эффективно снижать антигенные свойства трансплантатов и 2) предупреждать их бактериальное обсеменение за счет антисептических свойств используемых реагентов. При использовании указанных методов трансплантаты после операции служат как бы каркасом, по которому происходит замещение их новообразованной тканью.

Из химических методов известны способы консервация тканей в растворах альдегидов (формалин, глютаровый альдегид), который обеспечивает наибольшее снижение антигенных свойств (Лаврищева Г. И., Балаба Т. Я., Торбенко В.П. и др. Трансплантация тканей, консервированных в растворах формалина // Acta Chirurgiae Plasticae. - 1981. - Vol. 23, 1. - Р. 1-7; Schmidt Т., К. Р., Fellbaum С. Tarsusplastik mit hondroplast // Fortschr. Ophthalmol. - 1991. - Vol. 88. - P. 279-282). Главным недостатком является то, что после пересадки в большинстве случаев наблюдается инкапсуляция трансплантатов по типу инородных тел, и роль их сводится к функции протезов. Причиной является образование дополнительных поперечных межмолекулярных сшивок в коллагеновых волокнах, повышающих устойчивость последних к ферментативному лизису после пересадки.

Известны способы обработки пересаживаемых тканей детергентами (Allaire Е. et al. Cell-free arterial grafts: morphologic characteristics of aortic isografts, allografts, and xcnografts in rats // J. Vase. Surg.- 1994.- V. 19. - P. 446-456). При обработке детергентами белки и другие макромолекулы переводятся в растворимые формы, что облегчает их выведение из ткани. Снижение антигенности трансплантата за счет вымывания плазменных белков и клеточных элементов крови связано с удалением антигенов (групп А, В, О, HR, Rh и др. ). Однако использование этого способа для растворения клеточных мембран соединительной ткани, в которой клетки замурованы между плотно упакованными пучками коллагеновых волокон, неэффективно, так как требует предварительного нарушения целостности клеточной стенки. Это существенно усложняет технологию обработки тканей и исключает использование способа в серийном производстве.

Известен способ консервации трансплантатов в цитолизирующих растворах, таких как мертиолат (Bujia J. et al. A comparison of class II antigenicity of human tracheal allografts stored in cialit and in merthiolate // Laryngoscope. - 1990. - V.100.-P. 1337-1340) и циалит (Seiffert К. Е. Biological aspects of collagenous homografts // Acta Otorhinolaryngol. - Belg. - 1970. - Vol. 24, 1. - P. 27-33). Антигенные свойства аллотрансплантатов, консервированных в цитолизирующих растворах, снижаются вследствие разрушения клеточных элементов как главных иммуногенных компонентов пересаживаемых тканей. Недостатки этого способа те же, что и при обработке детергентами. Кроме того, при использовании этого способа невозможно: 1) контролировать полноту цитолиза в процессе консервации, 2) прогнозировать структуру регенерата, образующегося на месте пересадки.

Биоматериалы, полученные указанными методами, тестировались преимущественно по результатам их использования в экспериментах на животных и в клинических условиях. Специальных исследований, посвященных изучению структурных изменений в донорских тканях, при этом не проводилось.

Биоматериалы, получаемые в результате обработки химическими способами, обладают следующими недостатками: 1. Невозможность прогнозирования свойств регенерата, образующегося на месте имплантации биоматериала, что ограничивает их применение.

2. Трудность контроля полноты отмывки биоматериала от используемых реагентов. Учитывая, что реагенты, предложенные для обработки трансплантатов, являются токсичными, указанные способы не гарантируют отсутствия токсического влияния биоматериалов после имплантации.

В качестве прототипа нами выбран биоматериал, полученный путем стерилизации аллотрансплантатов с одновременной консервацией, предложенный В. Б. Сучковым (А. с. N651815, А 61 L 9/00). Биоматериал получен последовательной обработкой тканей растворами этанолмеркуриохлорида и цитилперидиния в различных соотношениях, в результате которой происходит мембранолиз клеток и экстракция водорастворимых белков. Таким образом, достигается снижение антигенных свойств трансплантата. Биоматериал, полученный по прототипу, имеет невоспроизводимую структуру и обладает следующими недостатками: 1. Большой разброс в содержании протеогликанов из-за неконтролируемой элиминации.

2. Повреждение третичной, вторичной и, возможно, первичной структуры неколлагеновых белков вследствие элиминации низкомолекулярных продуктов из тканей.

3. Вымывание гликозаминогликанов из тканей.

4. Частичная потеря волокнистой структуры на высоких уровнях надмолекулярной организации коллагена. Отек пучков и волокон, потеря четкости границ межволоконных промежутков, уменьшение размеров межпучковых пространств.

5. После пересадки биологический материал подвергается относительно быстрому лизису и замещается функционально неполноценной рубцовой тканью.

Кроме того, трудно контролировать степень отмывки биоматериала от используемых реагентов и избежать их токсического влияния после имплантации.

Решаемая заявляемым изобретением задача заключается в создании нового биоматериала для регенеративной хирургии с предельно низкими антигенными свойствами при сохранении биопластических и физико-механических свойств исходных донорских тканей, биоматериала, открывающего возможность селективного роста тканей на месте имплантации без признаков рубцевания или инкапсуляции, а также обеспечивающего обратное развитие поствоспалительных фиброзных и дегенеративно-дистрофических изменений в тканях.

Это достигается тем, что в новом биоматериале для регенеративной хирургии, состоящем из консервированной донорской соединительной ткани с элиминированными клеточными элементами согласно изобретению, донорская соединительная ткань на 70% соответствует фиброструктуре замещаемой ткани, а в волокнистых компонентах донорской соединительной ткани на 80-90% разблокированы химические связи протеогликанов и гликопротеинов, структурированных в коллагеновых волокнах, и частично элиминированы из пучков волокон гликозаминогликаны до остаточного содержания более или равного 50%.

Кроме того, в биоматериале для регенерации плотной оформленной соединительной ткани используют донорскую ткань с преимущественным содержанием гиалуроновой кислоты во внеклеточном матриксе, а в биоматериале для регенерации рыхлой соединительной ткани используют донорскую ткань с минимальным содержанием гиалуроновой кислоты, а в биоматериале для регенерации эпителиальной ткани используют донорскую ткань с преимущественным содержанием гепарансульфата, а в биоматериале для формирования богато-сосудистого регенерата используют донорскую ткань с преимущественным содержанием хондроитинсульфата.

При коррекции фиброзных и дегенеративных дистрофических изменений в тканях используют диспергированную форму, измельченную до порошкообразного состояния.

Сложные анатомические дефекты восстанавливают комбинированными донорскими тканями в различной их пропорции и геометрической форме.

Сущность изобретения заключается в том, что установлена ранее неизвестная закономерность между структурными характеристиками аллотрансплантата и его антигенными свойствами. Эта закономерность заключается в необходимости дозированного разрушения коллагеновых структур в донорских тканях и разблокирования химических связей протеогликанов, структурированных в пучках коллагеновых волокон с последующей частичной элиминацией разблокированных гликозаминогликанов.

Установлены количественные характеристики дозированного разрушения коллагеновых волокон. В донорской ткани должны быть на 80-90% разрушены химические связи коллагена с протеогликанами и разблокированные гликозаминогликаны должны быть на 50% или менее элиминированы из состава волокон. Модифицированная таким образом структура биоматериала позволяет существенно снизить антигенные свойства, сохраняя при этом физико-механические свойства исходной донорской ткани.

Другой установленной закономерностью в созданном биоматериале является условие 70%-ного соответствия по фиброструктуре донорского материала и замещаемой биоматериалом ткани, что позволяет сбалансировать скорость резорбции биоматериала со скоростью фибриллогенеза регенерата.

Для регенерации различных по структуре тканей используют биоматериал с различным содержанием гликозаминогликанов во внеклеточном матриксе. Структуру формируемого регенерата определяет преимущественное содержание одного из совокупности гликозаминогликанов. Для каждого конкретного вида регенерата подбирают донорскую ткань по составу гликозаминогликанов.

Так для регенерации плотной оформленной соединительной ткани используют донорскую ткань с преимущественным содержанием гиалуроновой кислоты, для регенерации рыхлой соединительной ткани используют донорскую ткань с минимальным содержанием гиалуроновой кислоты, для регенерации эпителиальной ткани используют донорскую ткань с преимущественным содержанием гепарансульфата, для формирования богато-сосудистого регенерата используют донорскую ткань с преимущественным содержанием хондроитинсульфата.

Также выявлена не известная ранее закономерность, по которой биоматериал, измельченный до порошкообразного состояния, обладает способностью привлечения и концентрации клеток макрофагального ряда и стимуляции их созревания, за счет чего появляется возможность коррекции фиброзных и дегенеративно-дистрофических изменений в тканях.

Также не известно ранее использование комбинации биоматериалов из разных донорских тканей в различной пропорции и геометрической конфигурации для восстановления сложных анатомических дефектов.

Предложенный биоматериал Аллоплант с контролируемыми структурными характеристиками обладает принципиально новыми свойствами: 1) возможностью селективного роста тканей на месте имплантированного биоматериала; 2) возможностью достоверного прогнозирования свойств регенерата, образующегося на месте имплантированного биоматериала; 3) возможностью коррекции фиброзных и дегенеративно-дистрофических изменений в тканях; 4) гемостатическими свойствами при замещении объемных дефектов; 5) возможностью использования для различных укрепляющих операций (например, пластике стенок живота при грыжах) за счет высоких прочностных свойств регенерата.

Предложенный биоматериал Аллоплант обладает предельно низкими антигенными свойствами, практически исключающими иммунный характер реакции после его имплантации.

Еще одним важным новым свойством является возможность серийного выпуска биоматериала, а также выпуск биоматериала, представляющего собой комбинацию исходных донорских тканей в различной пропорции и геометрической конфигурации (например, хрящ + дерма), эффективного при пластике сложных анатомических дефектов.

Для приготовления биоматериала Аллоплант используют донорскую соединительную ткань, на 70% соответствующую структуре замещаемой ткани, что устанавливают с помощью поляризационно-оптического метода.

Донорскую ткань освобождают, при наличии, от жировой клетчатки и мышечной ткани, затем последовательно обрабатывают анионными и катионными детергентами с целью мембранолиза. Одновременно осуществляют контроль за разблокированием связей протеогликонов и гликопротеинов в пучках коллогеновых волокон и элиминацией гликозаминогликанов. Контроль проводят гистохимическим методом. По достижении 90%-го разблокирования связи протеогликанов и гликопротеинов и не более 50%-ой элиминации гликозаминогликанов обработку прекращают. Биоматериал отмывают от реагентов, фасуют в стеклянные флаконы, заливают консервантом и проводят радиационную стерилизацию с использованием ускорителя электронов. Полученный материал подвергают бактериологическому и хирургическому контролю.

Для приготовления порошкообразной формы биоматериала его высушивают в лиофилизаторе и измельчают на роторной мельнице.

Пример 1.

Для регенерации склеры глаза при ее патологическом истончении или прогрессирующей близорукости использовали биоматериал, приготовленный из грудо-поясничной фасции, по фиброструктуре ткани на 70% соответствующей ткани склеры. Донорскую ткань освобождали от жировой клетчатки и остатков мышечной ткани, промывали в проточной воде. Далее ткань последовательно обрабатывали детергентами, выбранными из группы (додсцилсульфат натрия, цетилпиридиния хлорид, Твин-80, Тритон Х-100) с целью мембранолиза в течение 6-12 часов, затем в течение 1-3 часов - веществами, экстрагирующими жир и коагулирующими белки (диэтиловый эфир + этиловый спирт).

В биоматериале для регенерации склеры, полученном указанным способом, на 80% разблокированы связи протеогликанов и гликопротеинов, структурированных в пучках коллагеновых волокон, и на 50% элиминированы гликозаминогликаны из пучков волокон.

При имплантации биоматериала он резорбировался и замещался регенерировавшей плотной оформленной соединительной тканью склеры. Клиническим результатом являлось восстановление структуры и прочностных свойств склеры и остановка прогрессирования близорукости. Рецидивов и осложнений в отдаленные сроки наблюдения не отмечено, не выявлено признаков рубцевания.

Пример 2.

Для регенерации печени при циррозе использовали диспергированный биоматериал, приготовленный из висцеральных фасций. Донорскую ткань подвергали очищению от остатков крови, промывали в проточной воде. Обработка детергентами, выбранными из группы (цетилпиридиния хлорид, Твин-80, Тритон Х-100), с целью мембранолиза занимала 1-2,5 часа. Затем проводили обработку веществами, экстрагирующими жир и коагулирующими белки (диэтиловый эфир + этиловый спирт) в течение 30-90 минут. После отмывки тканей от реагентов, осуществляемой в проточной воде в течение 24-36 часов, производили измельчение на роторной мельнице.

В биоматериале для регенерации печени, полученном указанным способом, на 90% разблокированы связи протеогликанов и гликопротеинов, структурированных в пучках коллагеновых волокон, и на 50% элиминированы гликозаминогликаны из пучков волокон.

При введении биоматериала в виде суспензии на физиологическом растворе он резервировался и стимулировал регенерацию печеночной ткани до полного восстановления ее структуры и объема. Клинико-лабораторные тесты выявляли полное восстановление функциональной активности печени. Пункционная биопсия печени, проведенная через 3 года после лечения с использованием биоматериала, выявила высокую пролиферативную активность гепатоцитов. Отмечена резорбция циррозной соединительной ткани.

Пример 3.

Для восстановления сложных анатомических дефектов лица, например стенки и края орбиты после травмы, использовали биоматериал, представляющий собой комбинацию донорских тканей хряща и дермы, которые по фиброструктуре на 70% соответствовали замещаемым тканям. Донорские ткани освобождали от рогового слоя и подкожной жировой клетчатки, остатков костной ткани, промывали в проточной воде. Далее ткани последовательно обрабатывали детергентами, выбранными из группы (додсцилсульфат натрия, цетилпиридиния хлорид), с целью мембранолиза в течение 12-18 часов, затем в течение 1-5 часов - веществами, экстрагирующими жир и коагулирующими белки (диэтиловый эфир + этиловый спирт).

В биоматериале для восстановления сложных анатомических дефектов, полученном указанным способом, на 90% разблокированы связи протеогликанов и гликопротеинов, структурированных в пучках коллагеновых волокон, и на 50% элиминированы гликозаминогликаны из пучков волокон. Затем моделировали из хрящевой ткани 2 каркасных стержня (размерами 8Биоматериал аллоплант для регенеративной хирургии, патент № 218925760 мм и 8Биоматериал аллоплант для регенеративной хирургии, патент № 218925740 мм), а из ткани дермы - пластины треугольной формы с размером ребра 70 мм. Затем хрящевые стержни фиксировали к дермальной пластине сухожильными нитями.

При имплантации комбинированного биоматериала он постепенно резорбировался и на его месте образовывался регенерат из оформленной соединительной ткани, полностью восстановившей анатомический дефект. Рентгенологически определялось полноценное восстановление стенки орбиты, а визуально - восстановление формы края орбиты, симметрии лица и положения глазных яблок. В отдаленные сроки достигнутый результат сохранялся.

В таблице приведен краткий анализ примеров клиническою применения заявляемого биоматериала.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Биоматериал для регенеративной хирургии, состоящий из консервированной донорской человеческой соединительной ткани с элиминированными клеточными элементами, отличающийся тем, что донорская соединительная ткань соответствует по фиброструктуре замещаемой ткани на 70%, а в волокнистых компонентах донорской соединительной ткани на 80-90% разблокированы химические связи протеогликанов и гликопротеинов, структурированных в пучках коллагеновых волокон, и частично элиминированы из пучков волокон гликозаминокликаны до остаточного содержания более или равного 50.

2. Биоматериал по п. 1, отличающийся тем, что для регенерации плотной оформленной соединительной ткани используют донорскую ткань с преимущественным содержанием гиалуроновой кислоты во внеклеточном матриксе.

3. Биоматериал по п. 1, отличающийся тем, что для регенерации рыхлой соединительной ткани используют донорскую ткань с минимальным содержанием гиалуроновой кислоты.

4. Биоматериал по п. 1, отличающийся тем, что для регенерации эпителиальной ткани используют донорскую ткань с преимущественным содержанием гепарансульфата.

5. Биоматериал по п. 1, отличающийся тем, что для формирования богато-сосудистого регенерата используют донорскую ткань с преимущественным содержанием хондроитинсульфата.

6. Биоматериал по п. 1, отличающийся тем, что для коррекция фиброзных и дегенеративно-дистрофических изменений в тканях используют диспергированную форму, измельченную до порошкообразного состояния.

7. Биоматериал по п. 1, отличающийся тем, что для восстановления сложных анатомических дефектов используют комбинацию донорских тканей в различной пропорции и геометрической конфигурации.



Популярные патенты:

2444885 Посевной агрегат

... головки, высевающего аппарата и пневмосемяпроводов. К центральной раме с помощью шарниров, оси вращения которых расположены в плоскостях, параллельных продольно-вертикальной плоскости посевного агрегата, присоединены две крайние посевные секции. На всех посевных секциях установлены сошники. Центральная посевная секция связана с рамой через двуплечий рычаг, присоединенный к центральной посевной секции посредством цилиндрического шарнира. Ось вращения шарнира расположена в плоскости, параллельной поперечно-вертикальной плоскости посевного агрегата. Двуплечий рычаг связан также с рамой при помощи цилиндрического шарнира, ось вращения которого расположена в плоскости, параллельной ...


2201065 Приемная часть осевого сепаратора

... ним подающим барабаном, отличающаяся тем, что состоящий из одной или нескольких частей верхний кожух приемной части выполнен с переменным поперечным сечением с непрерывным переходом от полукруглого сечения в начале заборной части ротора до поперечного сечения, эксцентричного и соответствующего остальной части верхнего кожуха, к окончанию приемной части. 2. Приемная часть по п. 1, отличающаяся тем, что в заборной части ротора расположены со смещением по отношению друг к другу основные спиральные лопасти со сменными изнашиваемыми накладками, причем высота накладок уменьшается по направлению движения убранной массы с образованием конусной формы огибающей их поверхности. 3. Приемная ...


2464784 Защитный слой для растений и деревьев, его изготовление и его применение

... особенно предпочтительно в долях смеси от 1 до 20 мас.% из группы Al 2O3, TiO2 и ZrO2. 8. Применение по п.1, отличающееся тем, что слой SiO2 дополнительно включает, по меньшей мере, одно противомикробное действующее вещество.9. Применение по п.1, отличающееся тем, что слой SiO2 включает 0,1-50 мас.%, предпочтительно 1-20 мас.% относительно общей композиции, по меньшей мере, одного противобактериального действующего вещества в форме катионных, анионных или неионных деацетилированных хитозанов и хитозановых производных и/или фенолов из группы галогенированных дигидроксидифенилметанов, -сульфидов и -эфиров и/или замещенных четвертичных аммониевых солей алкилированной фосфорной ...


2399194 Способ и устройство контроля воздушного режима в корнеобитаемой среде

... между собой благодаря соединительным пневмотрубкам (5) общий герметичный замкнутый воздушный контур, газовый состав которого остается во время измерения однородным за счет постоянного интенсивного перемешивания. Величина этого внутреннего замкнутого объема является установочной константой предложенного устройства. Заявленный результат достигается благодаря следующей работе предложенного устройства.Для контроля воздушного режима какого-либо объекта отбирается представительный испытуемый образец (2) с внутренней воздухопроницаемой структурой, подходящий по размерам и форме. Им может быть почвенная проба или несколько единиц посадочного материала. Такой образец помещают в ...


2054862 Гидравлический режущий аппарат

... и соплом, отличающийся тем, что гидроцилиндр снабжен расположенными соосно с основной двумя дополнительными камерами низкого давления с поршнями, при этом камеры высокого давления выполнены в поршнях камер низкого давления, каждая из которых сообщена через соответствующие параллельно расположенные обратный клапан и регулируемый дроссель с пневмогидроаккумулятором, при этом эффективные площади Sш и Sп соответственно каждого штока-плунжера и поршня, установленного в дополнительной камере низкого давления, сквязаны соотношением 0,9Pн Sш Pзар Sп Pн Sш, где Pн - номинальное рабочее давление в камере высокого давления; Pзар - давление зарядки ...


Еще из этого раздела:

2423033 Способ укрепления склонов посевом семян древесных растений

2271095 Многофункциональное устройство

2437864 Способ микробиологической переработки птичьего помета

2076603 Способ повышения урожайности сельскохозяйственных культур

2024226 Производные s- -тиоакриламидов и композиция для предотвращения или ингибирования роста бактерий

2060624 Валкообразующий транспортер жатки-накопителя

2250583 Агрегат дернинный комбинированный

2420945 Гидравлическая система сельхозмашины

2495561 Машина лесозаготовительная

2298909 Устройство для сбора семян