Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ определения потенциальной соленостной толерантности водных беспозвоночных

 
Международная патентная классификация:       A01K

Патент на изобретение №:      2163071

Автор:      Филиппов А.А.

Патентообладатель:      Филиппов Андрей Александрович

Дата публикации:      20 Февраля, 2001

Начало действия патента:      3 Ноября, 1998

Адрес для переписки:      199034, Санкт-Петербург, Университетская наб. 1, ЗИН РАН, Филиппову А.А.


Изображения





Изобретение может быть использовано в экологии, рыбоводстве, океанографии, в системе биомониторинга при определении границ жизнеспособности водных организмов, а также в области аквакультуры. Проводят одноступенчатую акклимацию подопытных организмов к различной солености, определяют характер зависимости границ толерантного диапазона от солености акклимации и находят путем экстраполяции границы потенциальной толерантности. После завершения одноактной акклимации находят границы новых толерантных диапазонов, рассчитывают линии регрессии, отражающие изменения границ толерантных диапазонов в зависимости от солености акклимации, и, отложив на графике полученные зависимости, на пересечении их с линией "y=x" получают границы потенциального толерантного диапазона. Изобретение позволит значительно сократить время и упростить процесс определения потенциальной соленостной толерантности водных беспозвоночных. 2 ил. ,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к гидробиологии и может быть использовано в экологии, рыбоводстве, океанографии, в системе биомониторинга при определении границ жизнеспособности водных организмов, а также в области аквакультуры.

Известен способ определения потенциальной жизнеспособности культуры микроорганизмов путем дифференциального окрашивания клеток, которые перед окрашиванием подвергают последовательному воздействию ряда неспецифических токсических факторов (1).

Известен также способ определения жизнеспособности фитопланктона, при котором опытный и контрольный образцы после патогенного воздействия выдерживают в темноте в течение 5-15 мин, затем освещают прерывистым светом с длиной волны 600-670 нм и измеряют интенсивность фотохемилюминесценции. Критерием жизнеспособности клеток фитопланктона служит количество импульсов фотосинтетического послесвечения (2).

Данные способы не могут быть использованы для определения потенциальной солеустойчивости и не могут применяться по отношению к водным беспозвоночным.

Наиболее близким к предлагаемому изобретению является метод ступенчатой акклимации, описанный В.В.Хлебовичем (3). Метод ступенчатой акклимации В.В. Хлебовича заключается в следующем. У акклимированных к условиям лаборатории организмов определяют исходный диапазон толерантности на основе одного из удобных показателей физиологической активности. Таким показателем может быть интенсивность дыхания, скорость фильтрации, доля выживших или активных особей в воде различной солености. Далее проводится серия последовательных полностью завершенных акклимаций каждый раз к ранее достигнутым крайним значениям толерантного диапазона. Продолжительность акклимации на каждой ступени составляет около двух недель. Эксперимент проводится до тех пор, пока толерантность не перестанет меняться под воздействием акклимации. Потенциальная соленостная толерантность определяется как диапазон соленостей, заключенный между двумя значениями (верхним и нижним), достигнутыми в результате ступенчатой акклимации.

Метод В.В.Хлебовича имеет существенный недостаток: он требует постановки длительного эксперимента продолжительностью несколько месяцев. Это обстоятельство является неудобным для практической работы и не позволяет оценивать потенциальную толерантность ранних стадий жизненного цикла (в силу непродолжительности существования последних).

В основу предлагаемого изобретения положена задача ускорения и облегчения определения потенциальной соленостной толерантности.

Поставленная задача достигается путем проведения не многоступенчатой (как в методе В.В.Хлебовича), а одноступенчатой акклимации подопытных организмов к различным соленостям в пределах диапазона толерантности с последующим анализом различий толерантных диапазонов у животных, акклимированных к различной солености.

Сущность предлагаемого способа определения потенциальной соленостной толерантности водных беспозвоночных заключается в проведении акклимации подопытных организмов к различной солености, определении характера изменения границ толерантного диапазона в зависимости от солености акклимации и последующем нахождении границ потенциальной толерантности. Для оценки диапазонов толерантности до и после акклимации в данном случае предлагается использовать величины медианной летальной концентрации (солености).

При определении потенциальной соленостной толерантности водных беспозвоночных методом ступенчатой акклимации В.В.Хлебовича производится серия последовательных полностью завершенных акклимаций к ступенчато изменяемой солености. Продолжительность акклимации на каждой ступени составляет около 2 недель, при этом эксперимент проводится до тех пор, пока соленостная толерантность не перестанет меняться под воздействием предыдущей акклимации. В предлагаемом способе проводят одноступенчатую акклимацию, что значительно сокращает время и облегчает процесс определения потенциальной соленостной толерантности водных беспозвоночных. После завершения одноактной акклимации находят границы новых толерантных диапазонов, рассчитывают линии линейной регрессии, отражающие изменения границ толерантных диапазонов при изменении солености акклимации, и, отложив на графике полученные зависимости, на пересечении их с линией изоосмотичности получают границы потенциального толерантного диапазона.

На фиг. 1 показано изменение соленостной толерантности брюхоногих моллюсков гидробий из Губы Сельдяной Белого моря в ходе ступенчатой акклимации.

На фиг. 2 представлена предлагаемая схема определения потенциального толерантного диапазона. Схема содержит: 1 - верхние границы толерантных диапазонов, 2 - нижние границы толерантных диапазонов, 3 - линия изоосмотичности (y = x), 4 - рассчитанные линии регрессии, A и B - верхняя и нижняя границы потенциального толерантного диапазона.

По оси абсцисс (фиг. 1, 2) отложена соленость акклимации, по оси ординат - толерантный диапазон.

Определение потенциальной соленостной толерантности водных беспозвоночных осуществляют следующим образом. Совокупность подопытных животных, потенциальную толерантность которых требуется определить, подразделяют случайным образом на группы (5-10) по 100-200 экземпляров и помещают для акклимации в емкости с водой различной солености. Диапазон (разброс) солености в емкостях акклимации подбирают на основании данных по экологии этих организмов таким образом, чтобы он в максимальной степени охватывал их исходный диапазон толерантности. При отсутствии таких данных перед акклимацией необходимо провести определение исходной толерантности подопытных животных одним из известных способов. Максимальная продолжительность акклимации при температуре 15-20oC не ограничена, минимальная составляет 2 недели. Условия содержания подопытных беспозвоночных (режим освещенности, содержание кислорода и т.д.) должны быть сходными с теми, в которых данные беспозвоночные встречаются в природе. После завершения периода акклимации (т.е. не менее чем через две недели) проводят определение новых диапазонов толерантности подопытных животных. Для этого совокупность организмов, акклимированных к определенной солености, подразделяют на группы и переносят в емкости с тестовыми соленостями. Время тестирования выбирают произвольно, но оно должно быть достаточно продолжительным (не менее суток) и одинаковым для всех групп акклимированных животных. По окончании тестирования определяют количество погибших особей в каждой тестовой солености и рассчитывают медианную летальную концентрацию (LC(50)). Данную величину принимают за границу толерантного диапазона. Указанную последовательность действий проводят с беспозвоночными из каждой группы, акклимированной к определенной солености.

Далее определяют характер изменения границ толерантного диапазона в зависимости от солености акклимации. Для этого откладывают на графике полученные значения LC(50) для каждой группы акклимированных беспозвоночных напротив соответствующей солености акклимации и проводят прямые линии через отмеченные точки. Такую линию не всегда возможно провести "на глаз", так как в зависимости от точности соблюдения условий в эксперименте или точности расчета значений LC(50), полученные точки могут в той или иной степени отклоняться от прямой. В таком случае требуемую зависимость рассчитывают, используя метод наименьших квадратов. После того как требуемая линия рассчитана, ее наносят на вышеуказанный график. Одновременно на том же графике проводят линию "y = x", соответствующую условиям, когда соленость акклимации и границы диапазона толерантности совпадают. Точки пересечения прямых (одна из которых описывает изменение границ толерантного диапазона в зависимости от солености акклимации, а вторая является линией "y = x") будут соответствовать границам потенциального толерантного диапазона.

Осуществление предлагаемого способа по полной схеме (акклимация к лабораторным условиям, 2 недели соленостной акклимации и последующее определение толерантности) потребует для своего завершения от 1 до 1,5 месяцев. В случае же применения адаптогенов в ходе акклимации (что позволило бы сократить ее срок) или использования уже акклимированных к разным соленостям организмов, (например, из естественного градиента солености) для осуществления способа потребуется еще меньший период времени.

Пример. Для определения нижней границы диапазона потенциальной толерантности бокоплавов Pontoporeia affinis, животных, собранных в море при солености воды 6.2 г/л, помещали для акклимации по 200 штук в 20-литровые пластиковые аквариумы с соленостями: 1.3; 1.9; 2.6; 4.1; 6.0; 8.9; 13.6; 20,4 г/л. После 2 недель акклимации определяли их устойчивость к пониженной солености. Для этого беспозвоночных рассаживали по 10 экземпляров в 1-литровые стаканы с водой пониженной солености и определяли их смертность через 2 суток. По полученным данным рассчитывали величины LC(50), которые составили: Соленость акклимации - LC(50) 20.4 - 4.2 13.6 - 2.9 8.9 - 2.1 6.0 - 1.65 4.1 - 1.55 2.6 - 1.2 1.9 - 0.95 1.3 - 0.97 Линия регрессии, описывающая изменение значения LC(50) в зависимости от солености акклимации и рассчитанная по вышеприведенным данным, имела вид: Y = 0.168X + 0.701, где Y - LC(50), а X - соленость акклимации. Она пересекала линию "y = x" в точке с соленостью 0.8 г/л, которая и являлась нижней границей потенциального толерантного диапазона исследованных ракообразных.

Литература.

1. А.С. СССР N 203376.

2. А.С. СССР N 547199.

3. Хлебович В.В., Кондратенков А.П. "Потенциальная эвригалинность беломорского моллюска Hydrobia ulvae // Моллюски. Пути, методы и итоги их изучения Л.: Наука, 1971. С. 37-38).

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения потенциальной соленостной толерантности водных беспозвоночных путем деления совокупности исследуемых организмов на группы, проведения одноступенчатой соленостной акклимации различных групп организмов, каждую к своей солености в пределах исходного диапазона толерантности, определения по окончании акклимации новой границы толерантности в каждой группе организмов, нахождения линейной зависимости между границей толерантности и соленостью акклимации, отображения полученной зависимости на графике и определения точек, в которых рассчитанные зависимости пересекают прямую "x=y" и которые являются границами потенциальной толерантности.



Популярные патенты:

2160981 Способ создания плантаций солодки голой на обесструктуренных почвах в орошаемом земледелии

... 2 - 4 дня, а каждый последующий сложный лист - через 3 - 6 дней. С отрастанием семядолей корни солодки начинают быстро расти и становятся значительно длиннее гипокотиля. В фазе 7 - 8 настоящих листьев корневая система сеянцев проникает достаточно глубоко в почву и растения становятся более устойчивыми к изменениям условий внешней среды. К концу первого года вегетации проростки солодки, появившиеся весной, образуют один-два надземных побега высотой 15 - 30 см. Боковые корни проникают на глубину 50 - 80 см. Диаметр главного корня у корневой шейки достигает 0,5 - 1,0 см. Корневая шейка не только разрастается в ширину, но и вытягивается и вместе с коротким гипокотилем легко отличается ...


2171570 Устройство для группового учета надоев молока при доении

... МК посредством гибкого шланга (34); МК имеет МСК (27) с обратным клапаном (29), МР (28) цилиндрической формы, установленный на опорных пружинах (40), и сифон (30) для вывода отмеренной порции молока в вакуумированную емкость, при этом сифон укреплен в дне МР. Подача атмосферного воздуха в МК осуществляется через трубку (39) двухходовым клапаном (36), управляемым электомагнитом (35), срабатывающим при достижении МР заданного положения; на основании МК и МР имеются кольцевые резиновые упоры (32), которые при соприкосновении друг с другом образуют полость (41), к которой подведен вакуум по трубке (33), для удержания МР в нижнем положении. Число срабатываний электромагнита ...


2281645 Устройство для размещения цветов и растений с подсветкой (варианты)

... погоду, в холодных климатических зонах, в регионах с коротким световым днем.Данное устройство позволяет использовать естественное и искусственное освещение цветов и растений в жилых и производственных помещениях, а также на фасадах зданий без создания дорогостоящих тепличных комплексов. Данное дополнительное освещение является местным и направлено на конкретное растение. Дополнительное освещение способствует ускорению роста и созревания цветов и растений, что является особенно ценным для регионов с коротким световым днем, особенно в осенне-зимний период. Это достигается тем, что по первому варианту устройство для размещения цветов и растений с подсветкой снабжено опорной ...


2477036 Агрегат для предпосевной обработки почвы и посева

... осуществлении предпосевной обработки почвы и посева за вычетом суммарной ширины остальных дисков для крепления почвозацепов.При работе агрегата для предпосевной обработки почвы и посева почвозацепы рыхлительного ротора, принудительно перекатываясь под действием тяговой силы трактора, производят рыхление почвы полосами и одновременно через ускоряющую передачу приводят во вращение фрезерный ротор с установленными на нем Г-образными ножами. Стрельчатые культиваторные лапы подрезают и рыхлят пласт почвы в необработанных после прохода приводного ротора междурядьях. Одновременно с этим через туконаправители культиваторных лап в почву подаются минеральные удобрения. Далее Г-образные ножи ...


2150199 Способ закрепления элемента рыболовной снасти, выполненного с внутренней полостью, к леске

... переводят спираль 3 и грузило 2. Для обеспечения прочного соединения элемента рыболовной снасти грузило 2, спираль 3 и поплавок 4 с эластичным элементом 5 после растяжения эластичного элемента 5 (фиг.5) на его поверхность наносят клей с помощью намазочного устройства. С этой целью берут клей "Момент", выдавливают на эластичный элемент 5 и с помощью кисти тонким слоем покрывают эластичный элемент 5. После нанесения клея грузило 2, спираль 3 и поплавок 4 переводят на эластичный элемент 5. Так как в результате растяжки эластичного элемента его наружный размер менее диаметра отверстий элементов рыболовной снасти, то клей при переводе не смазывают с поверхности эластичного элемента 5. ...


Еще из этого раздела:

2201663 Устройство для ориентированной посадки лука

2235450 Малогабаритная машина для обескрыливания, очистки и сортирования лесных семян

2099929 Почвенная растительная смесь для культурных газонов и способ их создания

2272840 Способ молекулярного маркирования пола хмеля обыкновенного (humulus lupulus l)

2470922 Сокристаллы

2400069 Способ защиты материалов от микробного разрушения

2165701 Фунгицидная композиция и способ обработки культур для борьбы или профилактики грибковых заболеваний

2264075 Рулонный пресс-подборщик лубяных культур

2181542 Способ хранения эритроцитов в условиях охлаждения при отсутствии кислорода (варианты)

2121263 Способ лесоводственной оценки технологического комплекса машин