Способ стимуляции проращивания семян сельскохозяйственных культурПатент на изобретение №: 2492625 Автор: Осадченко Иван Михайлович (RU), Горлов Иван Фёдорович (RU), Злобина Елена Юрьевна (RU), Бараников Владимир Анатольевич (RU), Николаев Дмитрий Владимирович (RU) Патентообладатель: Государственное научное учреждение Поволжский научно-исследовательский институт производства и переработки мясомолочной продукции Российской академии сельскохозяйственных наук (RU) Дата публикации: 10 Мая, 2013 Начало действия патента: 27 Октября, 2011 Адрес для переписки: 400131, г.Волгоград, ул. Рокоссовского, 6, ГНУ НИИММП Россельхозакадемии Изобретение относится к области сельского хозяйства. Способ включает замачивание семян сельскохозяйственных культур в омагниченной водопроводной воде с последующим проращиванием. При этом семена замачивают в воде, обработанной в магнитном поле магнитной мешалки типа ММ, в емкости из неэлектропроводного материала, например стакане из стекла с магнитным стержнем, при толщине слоя 40 мм. Магнитное поле создается вращающимися постоянными магнитами при скорости вращения 500-600 об./мин в течение 3,5-4-х часов с получением воды с рН 8,3-8,4, ОВП 150-160 мВ, из исходной воды с рН 7,7-8,2, ОВП +200-+215 мВ и общей минерализацией 200-350 мг/л. Параметры магнитной обработки - магнитная напряженность 1,0-1,3 кА/м, магнитная индукция 1,2-1,7 мТ, удельная энергия 800-900 Дж/л. Способ позволяет повысить эффективность обработки семян, посевные качества и ассортимент семян, а также диапазон параметров магнитной обработки. 2 табл., 2 пр. Изобретение относится к сельскому хозяйству, конкретно к способам предпосевной обработки семян сельхозкультур. Стимуляция проращивания семян сельхозкультур является важным этапом их возделывания. Пророщенные семена зерновых, зернобобовых культур применяются в качестве кормовых добавок и добавок в пищу для обогащения их витаминами, ферментами и т.п. Описаны различные способы стимуляции проращивания семян, в том числе физические (с помощью нагревания и охлаждения), химические (с помощью химреагентов), физико-химические (обработкой в электрических и магнитных полях и др.). Одним из эффективных является способ стимуляции проращивания семян в магнитоактивированной воде и водных растворах. Имеются многочисленные примеры обработки воды и водных растворов в магнитном поле и использовании их для замачивания семян сельхозкультур для активации перед высевом в почву. Однако вопросы теории и механизма активации в магнитном поле развиты слабо и недостаточно, в том числе, по сравнению с электрохимической активацией (ЭХА) воды и водных растворов для замачивания семян. Это, видимо, связано с трудностями индикации магнитного воздействия на жидкости и рядом полученных негативных последствий. Предполагается, что при омагничивании жидкостей происходит ряд структурно-энергетических изменений молекул воды как растворителя, а также активации примесей воды - ионов, микрочастиц взвесей и газов. Показано, что при использовании магнитных (электромагнитных) полей изменяются физико-химические показатели активированных жидкостей, влияющих на их биологическую активность на животных и растениях, в частности на проницаемость биологических мембран. Кроме того есть указания, что магнитные поля высокой интенсивности действуют отрицательно на биологические объекты, а положительный эффект оказывают поля низкой интенсивности при определенных параметрах обработки. Одним из наиболее простых и доступных является магнитная обработка в поле постоянного магнита воды, водных растворов и суспензий (водных систем) и замачивание в них семян. При обработке водных систем в сельском хозяйстве, начали применяться наиболее доступные и простые показатели их качества - по их биологической активности и по изменению рН, так как одного этого показателя недостаточно. Важен контроль за эффективностью действия магнитных установок, но до настоящего времени нет точных, быстродействующих датчиков - индикаторов изменения свойств водных сред после магнитной обработки. Указывается, что действие постоянного магнита связано с действием электрического поля, создаваемого параллельно с магнитным аппаратом. Эффективность магнитного поля носит экстремальный характер, поэтому необходима экспериментальная проверка процесса омагничивания конкретной жидкости [1]. Исследовано влияние импульсного электрического поля на энергию прорастания семян сои. Установлено, что наибольшее значение энергии прорастания (72%) получено при обработке семян в течение 10 минут импульсным электрическим полем в 300 Гц с последующей отлежкой обработанных семян в течение 4 суток, энергия прорастания семян без обработки - 51% [2]. Описан способ обработки семян обработкой их водными растворами микроэлементов [3]. На указанный раствор предварительно воздействовали электромагнитным полем напряженностью 1 1,5 кА/м, на которое накладывали импульсы и воздействие гидравлического удара энергией 1,5 2,5 кДж при частоте следования 5 6 импульсов в минуту. Семена помещали в цилиндрическую ванну с раствором микроэлементов. Импульсный генератор подключен через катушку к электродам, размещенным в параболической камере, заполненной водой (для гидроудара). Импульсный генератор состоит из высоковольтного трансформатора, диода, конденсатора и воздушного разрядника. В камеру загружали 150 кг семян и раствор, содержащий соединения микроэлементов в концентрациях, %; молибдат аммония 0,04; сульфат марганца 0,5; пангамат кальция 0,08; янтарная кислота 0,001. Импульсный генератор создавал гидроудар. Обработанные семена высевали на питательную среду и через 8 дней определяли всхожесть, длину корней и проростков, параллельно определяли эти показатели у семян без обработки. Прирост полевой всхожести перца 7%, баклажан 11% к контролю (без обработки семян). Недостатки способа: - сложность технологии, аппаратурного оформления; - узкий диапазон параметров обработки (только напряженность магнитного поля; - отсутствия показателей качества омагниченной воды (раствора). Наиболее близкий к предлагаемому описан способ предпосевной обработки семян огурца намачиванием семян в омагниченной водопроводной воде и их проращивание [4]. Омагничивание воды осуществляли посредствам подключения к центральной оросительной магистрали установки, представляющий собой дюральалюминиевый полый цилиндр, внутренний диаметр которого - 3 см, длина - 10 м. В его корпус впрессованы по спирали магнитные вставки на расстоянии друг от друга 4 5 см. Напряженность магнитного индуцированного поля внутри цилиндра составляет 50 Э (что составляет по нашему расчету около 4 кА/м). Семена намачивали в течение 12 часов в водопроводной воде (контроль) и омагниченной воде и проращивали. Лабораторные исследования и полевые опыты проводили в условиях ОАО «Рязанский тепличный комбинат «Солнечный». Показано, что предпосевная обработка семян огурца гибрида F1 Эстафета оказала положительное влияние на формирование корней и проростков огурца (табл.1). Таблица 1 Влияние омагниченной воды на длину корней и проростков ВариантДлина корней, мм% к контролюДлина проростка, мм% к контролю Контроль (без обработки 70,0100,026,1 100,0Намачивание семян в омагниченной воде81,1 115,927,906,9Недостатки способа: относительно низкая эффективность и функциональные возможности в виду ограниченности данных по диапазону параметров магнитной обработки (только величина напряженности магнитного поля - 4 кА/м; их отсутствия - о скорости протока водопроводной воды, о качестве омагниченной воды, о энергии прорастания и всхожести семян. Технический результат - повышение эффективности способа, посевных качеств и ассортимента семян, диапазона параметров магнитной обработки. Сущность изобретения заключается в том, что магнитную обработку водопроводной воды проводят на магнитной мешалке типа ММ (например, ММ-5) в емкости из неэлектропроводного материала (например, из стекла). Магнитная мешалка согласно паспорту и инструкции (Б 63.291.00 ПС) выпускается серийно (ПО «Закарпатприбор», Украина, Ужгород, 1991 г.) и включает электродвигатель, на валу которого в верхней части запрессованы 2 постоянных магнита (стержней диаметром 6 мм, длинной 30 мм), электронагреватель, на передней стенке - панель управления, сверху крышка. В комплекте имеется магнитный стальной стержень (диаметром 8 мм, длиной 15 мм, в пластиковой оболочке). На крышку мешалки устанавливали емкость из неэлектропроводного материала, в которую заливают обрабатываемую воду и вносят магнитный стержень. По инструкции мешалка предназначена для перемешивания жидкостей в емкости. Габаритные размеры мешалки 180·188·149 мм; масса - 3,5 кг. При включении магнитной мешалки (мы работали без электронагревателя) устанавливают число оборотов 500 600 об./мин, при этом увлекается в движение (вращение) магнитный стержень, который перемешивает жидкость с заданной оптимальной скоростью с разной линейной скоростью в центре и по кругу. Число оборотов обеспечивает надлежащее перемешивание, при меньшем числе оборотов эффективность уменьшается, при большем числе оборотов стержень не вращается, а только вибрирует на месте. Эти условия установлены экспериментальным путем. Экспериментальным же путем установлено, что наиболее приемлем режим обработки, при котором 200 мл после отстоя водопроводной воды с толщиной слоя - 40 мм обрабатывают в течение 3,5 4-х часов с показателями качества рН и окислительно-восстановительного потенциала (ОВП, мВ отн. ХСЭ): рНОВП, мВОбщая минерализация, мг/л исходная вода 7,7 8,2+200 +215200 350омагниченная вода 8,3 8,4150 160200 350температура 20 25°СОтклонение показателей омагниченной воды от исходной по рН 0,2 0,6 и ОВП 50 65 мВ. Исходная вода производства АО «Волгоградводоканал» после водо-подготовки имела показатели качества: общая минерализация 200 400 мг/лобщая жесткость 3 4 мг·экв./лсодержала основные ионыNa+, K+ , Са2+, Mg2+, Fe2+, Cl- , SO4 2-, НСО3 -в пределах санитарных норм и правил. Измеренная напряженность магнитного поля мешалки на высоте 40 мм и по кругу диаметром 80 мм (по размеру стакана с водой) составила 1,0 1,3 кА/м, а магнитная индукция 1,2 1,7 mT. Рассчитана удельная энергия - 800 900 Дж/л (при мощности электродвигателя 20 В·А). На воду в сосуде кроме вращающегося магнитного поля постоянных магнитов действовало также электрическое поле электродвигателя (обмотка) на расстоянии около 40 мм до нижних слоев воды в стакане, что подтверждено качественно по наличию электроиндукции. Омагниченной водой замачивали семена сельхозкультур - ячменя, огурца и томата в течение 2 4 часов и проращивали согласно требованиям ГОСТ 12038-84 при температуре 20 25°С в темноте. Энергию прорастания и всхожесть определяли для семян ячменя и огурца через 3 и 7 суток соответственно, для семян томата через 5 и 10 суток соответственно, а также длины корней и проростков. Пример 1. Омагничивание воды. В стакан вместимостью 0,8 л заливали водопроводную питьевую воду после отстоя в течение нескольких часов (5 6 час) с рН 8,0 и ОВП +200 мВ (ХСЭ) с минерализацией 250 мг/л, помещали магнитный стержень, включали магнитную мешалку ММ-5, при температуре 20 25°С проводили обработку в слое толщиной 40 мм при 500 600 об/мин в течение 3,5 часов, получили омагниченную воду со следующими показателями качества: рН 8,4, ОВП +150 мВ, минерализацией 250 мг/л. Напряженность магнитного поля составила на высоте 40 мм и по кругу 80 мм 1,0 1,3 кА, индукции 1,2 1,7 mT, удельный расход энергии 840 Дж/л. Отклонение рН 0,4, ОВП 50 мВ к исходной воде. Вода содержала основные ионы: Na+, K+, Са2+, Mg2+ , Fe2+, Cl-, SO4 2-, НСО3 - в пределах санитарных норм и правил. Пример 2. Проращивание семян. Семена ячменя, огурца и томатов замачивали в омагниченной воде в течении 3,5-часов и проращивали в соответствии с требованиями ГОСТ 12038-84. Определяли энергию прорастания, всхожесть, длину корней и проростков (табл.2). Таблица 2 Показатели проращивания (средние значение) Вариант опытаЭнергия прорастания, %Всхожесть, % Морфологические показатели на 7 сутки корней, ммпроростков, мм Ячмень Исходная вода (контроль)86 9564,81109,72 Омагниченная вода 9810093,5 166,0 ОгурецИсх.вода(контроль) 9310065,18 85,70Омагниченная вода97100 83,18104,0 Томаты Вариант опытаЭнергия прорастания, %Всхожесть, % Морфологические показатели на 10 сутки корней, ммпроростков, мм Исх. вода(контроль)90 9529,8 42,0Омагниченная вода 9510066,8 74,1Как видно из данных таблицы 2, замачивание омагниченной водой позволяет повысить показатели энергии прорастания, всхожести и длину корней и проростков по отношению к контрольному варианту: энергия прорастания повышается на 4 12%, всхожесть на 5%, длина корней и проростков на 18 28 мм и 18 51 мм соответственно (в прототипе длина корней превышает контроль на 11,1 мм, длина проростков на 1,8 мм). Таким образом, предлагаемый способ позволяет достичь более высокую эффективность с использованием водопроводной воды, обработанной вращающимся магнитным полем на магнитной мешалке с широким диапазоном параметров омагничивания, показателей омагниченной воды и расширения ассортимента семян. В согласии с литературными источниками мы полагаем, что механизм стимуляции прорастания семян сельхозкультур связан с усилением проницаемости мембран клеток, повышением активности ферментов под воздействием изменений кислотности среды, ОВП, условий гидратации ионов металлов - примесей наноразмерных частиц в воде, в т.ч. гидратов ионов кальция и магния (Са2+ · 4Н2О, Mg2+ · 6Н2О), нарушения структуры ассоционов молекул воды. Перечень источников информации, принятых во внимание при экспертизе: 1. Классен В.И. Омагничивание водных систем. Л. 1982., 296 с. 2. Рубцова Е.Н., Хныкина А.Х. Влияние импульсного тока на энергию прорастания семян сои // Механ. и электриф. сельского хозяйства. 2009. 12 с.26. 3. SU 880288, 1980, А01С 1/00. 4 Таланова Л.А, Обоснование эффективности обработки семян и растений огурца омагниченной водой и гуминовыми кислотами. Автореферат дисс с.-x. наук., Москва, 2006, 27 с. Формула изобретенияСпособ стимуляции проращивания семян сельскохозяйственных культур, включающий их замачивание в омагниченной водопроводной воде с последующим проращиванием, отличающийся тем, что семена замачивают в воде, обработанной в магнитном поле магнитной мешалки типа ММ, в емкости из неэлектропроводного материала, например, стакане из стекла с магнитным стержнем, при толщине слоя 40 мм, магнитное поле создается вращающимися постоянными магнитами при скорости вращения 500-600 об/мин в течение 3,5-4 ч с получением воды с рН 8,3-8,4, ОВП 150-160 мВ, из исходной воды с рН 7,7-8,2, ОВП +200-+215 мВ и общей минерализацией 200-350 мг/л, а параметры магнитной обработки - магнитная напряженность 1,0-1,3 кА/м, магнитная индукция 1,2-1,7 мТ, удельная энергия 800-900 Дж/л. Популярные патенты: 2161391 Комбинированная почвообрабатывающая посевная машина ... результат - повышение качества обработки и посева. Для устранения указанных недостатков и повышения качества обработки почвы и посева на раме навесной машины установлен ящик с туками, а за плоскорезными рабочими органами, выполненными в виде лап-сошников, установлены лопастной барабан-выравниватель и спиральный каток, причем прицепная часть машины оборудована ящиком для семян с высевающими аппаратами и дисковыми сошниками, за которыми установлен уплотняющий барабан. Размещение лап-сошников за дисковыми батареями повышает качество крошения почвы, распределение удобрений под почвой и обеспечивает укладку туков удобрений на влажное ложе. Установка за плоскорезными ... 2442301 Устройство почвообрабатывающего орудия ... ОСС 354.00.00.000РЭ, 2002 г., ООО Сибирский Агропромышленный Дом, Сибирское Отделение Российской Академии сельскохозяйственных наук).Техническое решение по почвообрабатывающей посевной машине «ОБЬ-43Т» принято нами за прототип как наиболее близкое по поставленной задаче и методам ее осуществления. Недостатки технического решения по прототипу: 1) невысокое качество обработки почвы, вызванное образованием гребней батареями кольцевых катков орудий на стыках двух машин, соединенных сцепкой в широкозахватный агрегат; 2) не заделываются борозды, оставленные лапами заднего ряда и колеи от колес агрегата, из-за перекатывания батареи кольцевых катков по гребням.Задачей по ... 2427999 Способ повышения плодородия мерзлотных засоленных почв в условиях криолитзоны ... (утилизирующих органические источники азота) низкая - около 10-15 млн КОЕ/ г почвы;- реакция численности группы на запашку сидерата отмечалась к августу следующего после запашки года и была максимальной во второй год последействия; - динамика численности микроорганизмов, учитываемых на КАА (утилизирующие минеральные источники азота), была во многом сходной с таковой учитываемых на МПА.Таким образом, процессы минерализации зеленой массы в исследуемой почве в условиях криолитозоны крайне заторможены. Ответная реакция микрофлоры наблюдается только через год после запашки, а последействие сохраняется в течение 2-3 лет. Сидеральные удобрения оказывают влияние не только на численность ... 2285375 Способ обработки почвы и устройство для его осуществления ... вертикальной плоскости в виде четырехзвенника, состоящего из горизонтального ползуна, соединенного с гидроцилиндром, стойки с горизонтальным шарниром, соединенной шарнирно с ползуном при помощи промежуточного звена. А также тем, что стойка установлено под углом к горизонтальной плоскости.На фиг.1 показано продольное сечение пахотного слоя по длине рабочего прохода. На фиг.2 изображена общая схема устройства для осуществления предлагаемого способа.Способ обработки характеризуется тем, что в пределах одного рабочего прохода по длине поля производится рыхление пахотного слоя на разную глубину h1, h 2, h3, hi...hn (фиг.1) в движении на каждом участке поля.Способ обработки почвы ... 2395497 Способ стимулирования роста подсолнечника регулятором роста ... действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 15.10.2010 Дата публикации: ... |
Еще из этого раздела: 2159526 Устройство для навешивания сельскохозяйственных орудий на трактор 2015654 Теплица для подземной выработки 2197796 Рабочий орган ручного почвообрабатывающего орудия 2066320 Производные тиазола, способ их получения и способ борьбы с грибками 2229783 Способ посева семян трав и кустарников для создания пастбищ 2476068 Фильтр для использования при переработке пищевых продуктов 2447645 Аппарат для обмолота коробочек семян 2261588 Способ электростимуляции жизнедеятельности растений 2423036 Биоконтейнер для посадки растений 2050099 Косилка с всасывающим устройством |