Способ повышения вегетации и жизнестойкости растенийПатент на изобретение №: 2469526 Автор: Думицкий Владимир Иванович (RU) Патентообладатель: Думицкий Владимир Иванович (RU) Дата публикации: 10 Сентября, 2012 Начало действия патента: 28 Февраля, 2011 Адрес для переписки: 248000, г. Калуга, ул. Георгиевская, 4, кв.4, В.И. Думицкому Изображения![]() Изобретение относится к области сельского хозяйства, в частности к методам электромагнитного воздействия на растения видимым диапазоном волн. В способе подают электромагнитный световой поток от излучателя. При этом световой поток или его часть поляризуют, смешивают с неполяризованным, если такой имеется, и отражают в направлении растений, например, в течение всего периода вегетации растений. Падающий световой поток частично или полностью направляют в область угла Брюстера. В световом потоке или его части периодически изменяют плотность поляризации от минимальной, например, равной нулю, до максимальной. Период изменения плотности поляризованного излучения устанавливают в зависимости, например, от вида растения. При интенсивности отраженного света не выше пороговой коэффициент преломления в нем пленки отражателя изменяют плавно или дискретно, например, в пределах выбранной расширенной угловой зоны Брюстера. Падающий световой поток предварительно диффундируют, например, тем же отражателем или источником излучения. Способ позволяет повысить вегетацию и жизнестойкость растений, а также уменьшить площадь посева семян. 5 з.п. ф-лы, 2 ил. Изобретение относится к сельскому хозяйству и может быть использовано при выращивании сельхозкультур, например, в оранжереях. В природе воздействие отраженного от Луны света на биообъекты было отмечено еще в глубокой древности. Точно такое же воздействие оказывает на биообъекты и лазерное излучение. А.Л.Чижевский указал на важность того, что отраженный от поверхности Луны солнечный свет приобретает поляризацию. [1] - Правдивцев В.Л. Эти загадочные зеркала, изд. 3-е, стереотипное. М.: РИЦМДК, 2004 г., стр.135, «От чего бесятся тифозные бациллы Известны способы выращивания растений, при которых для повышения продуктивности растений семена подвергают воздействию магнитного поля (а.с. Недостатком их является недостаточная эффективность. Существует метод изменения спектрального состава излучателя путем подбора газоразрядных ламп для оранжерей по единому спектру излучения (патент Известный метод имеет большую трудоемкость, неэкономичен, мало эффективен. Известен метод воздействия на биообъекты (патент РФ Недостатки: сложность организации самого метода, высокая стоимость. Кроме того, предлагаемая система модуляции импульсов неоправданно усложнена и на практике мало применима для облучения растущих растений, например, в оранжереях. Известен способ воздействия на биообъекты (патент РФ Недостаток: метод работоспособен при наличии дополнительного источника света (Солнца) или мощных излучателей в оранжереях. Наиболее близким прототипом является метод, описанный в [2] - Протасова Н.Н. Светокультура как способ выявления потенциальной продуктивности растений (Институт физиологии растений им. К.А.Тимирязева АН СССР). Физиология растений, том 34, вып.4, 1987 г. В работе исследован способ повышения продуктивности растений путем регулирования интенсивности и спектрального состава излучения. Недостатки способа: необходимость создания специальных растениеводческих ламп, имеющих высокий КПД и благоприятный для растений спектральный состав, большие электрозатраты, дорогостоящий. Целью изобретения является усиление вегетации растений (продуктивности) и их жизнестойкости (при малых затратах энергии). Поставленная цель достигается тем, что электромагнитное облучение (освещение) растений видимым светом осуществляют только после его поляризации и отражения в сторону растений, например, в течении всего периода вегетации растений. На фиг.1 изображена схема, иллюстрирующая способ, где: 1 - источник излучения электромагнитных волн видимого спектра; 2 - падающий световой поток, Фпад; 3 - угол Брюстера (угол между нормалью к поверхности отражения и лучом света) Описание способа От источника излучения 1 подают электромагнитные волны 2 видимого диапазона под углом Брюстера 3 (или в зону 4 угла Брюстера) к отражателю 5. Световой поток 2 из воздушной среды падает на диэлектрический поляризатор 6 (выполнен, например, из стекла с показателем преломления n), который на границе раздела двух сред (воздух-стекло) производит преломление 7 и отражение 8 потока света, попавшего в угол (зону) Брюстера. Отраженный электромагнитный поток 8 поляризуется линейно в направлении, перпендикулярном плоскости падения (плоскость падения проходит через падающий луч и нормаль к поверхности падения). Преломленный электромагнитный поток 7 в диэлектрике 6 падает на полированную поверхность 9 металлизированного зеркала (обратная сторона зеркала) и поглощается ею. Происходит взаимодействие электромагнитных волн с поверхностью металла, возникает отраженная 10 электромагнитная волна (вторичная), величина которой полностью определяется коэффициентом отражения (Котр1), равным: Котр1=Фотр1/Фпад1 (где: Ф отр1 - энергия отраженного электромагнитного потока; Ф пад1 - энергия падающего потока в преломляющей среде-стекле, Котр1 Отраженный от металла 9 луч света 10 (световой поток) не поляризуется и движется в диэлектрике под углом, равным углу падения в среде. На границе диэлектрик-воздух (показатель преломления воздуха - no) снова преломляется под углом, равным углу падения (углу Таким образом, способ в данном случае можно описать математически (без учета потерь):
Кпол - коэффициент отражения поляризованного света; Фотр - смешанный световой поток. В предлагаемом способе (1) можно изменять плотность поляризации путем увеличения лучистой энергии в угле Брюстера (2). Например, если все лучи пропустить под углом Брюстера, то Кпол Таким образом, инструментом, позволяющим поляризовать свет, является отражатель 5, который в силу своих конструктивных особенностей способен отражать свет различной интенсивности и требуемой плотности поляризации, оптимальные значения которых влияют на скорость развития растений - на фотосинтез. Однако фотосинтез растет до вполне определенного предела насыщения в соответствии с ростом плотности ФАР (Вт/м 2) в области 380-720 нм (ФАР - фотосинтетически активная радиация). В работе [2] замечено, что при длительном выращивании растений на различных интенсивностях света (неполяризованного) вплоть до насыщающих, равных максимальным солнечным - 500 Вт/м 2 ФАР, тормозится рост площади листьев и подавляется рост стебля. При этом свет высоких интенсивностей (более 400 Вт/м 2 ФАР) настолько подавляет рост растений, что в этих условиях вырастают растения карликовой формы. Так, салат, выращенный при разных интенсивностях света (Вт/м2 ФАР) имеет соответственно различную биомассу. При оптимальной интенсивности света (200 Вт/м2) биомасса листьев наибольшая, при интенсивности 420 Вт/м2 - наименьшая [2]. Отсюда максимальный эффект увеличения фотосинтеза, зависящий от интенсивности светового отраженного потока, не может быть беспредельным. Он ограничен порогом насыщения и может колебаться в зависимости от типа растений, условий питания и т.д., например, от 150 до 220 Вт/м2 ФАР [2]. В этом случае фотосинтез и рост хорошо сбалансированы для определенных видов растений. Для исследования предлагаемого способа был изготовлен макет (установка), содержащий две изолированные камеры - I и II, на дно которых были помещены ящики с проросшими семенами растений (фасоли и пшеницы). Излучатель давал неполяризованное излучение видимого света: I ящичек имел зеркальный отражатель, а II - бумажный отражатель. Отражатели имеют возможность менять угол отражения, близкий к углу При диффузионном падающем фотопотоке часть фотонов всегда попадает в зону угла Брюстера. Некоторая часть от этой части электромагнитного потока поляризуется, отражается и направляется к растениям совместно с отраженным неполяризованным светом. При эксперименте все камеры I и II плотно закрываются тканью от внешнего освещения. Интенсивность излучения была установлена около (70-75) Вт/м2 ФАР, учитывались предельные значения ФАР [2]. Был установлен 10-часовой фотопериод. Влажность грунта в ящичках поддерживалась полуавтоматически (по показаниям проводимости грунта). Если проводимость падала, происходил полив растений до требуемой нормы. Эксперимент проводился в течение 14 суток: 9 суток вегетативный срок, 5 суток - проверка на выживаемость (без влаги). Испытывались фасоль и пшеница, скорость роста растений в ящичках I и II сравнивались со скоростью роста тех же растений в нормальных условиях. Были получены следующие результаты. 1. При использовании отражателей произошло увеличение синтетической деятельности высших растений в среднем на 37% [(19-51)%] - для зеркального отражателя; на 9% [(3-15)%] - для бумажного отражателя (было проведено 4 эксперимента). Развитие растений в I и II ящичках проходило идентично: фасоль в I ящичке заметно опережала в росте фасоль в III ящичке, жизнестойкость, например, пшеницы после 5 суток засухи существенно выше, чем в II, III ящичках. В данном примере интенсивность смешанного светового потока была примерно в 2 раза меньше рекомендованной в [2], а усиление фотосинтетической деятельности растений - более чем в 1,5 раза выше. Коэффициент поляризации у стекла Кпол В устройстве фиг.1 заменяют, например, диэлектрический поляризатор 6 (зеркало) на матовый отражатель, соответствующий режиму «ночи» и т.д. К методу добавляют: Регулировать фотопериод по предложенному способу можно автоматически. Для этого в качестве отражателя (затвора) можно использовать пленку - полированную керамику 14 (Фиг.1а)), расположенную поверх зеркала 9 (6). В нормальном состоянии U=0 (U - управляющий сигнал) керамический слой (пленка) прозрачен для лучей видимого спектра (устройство работает в режиме «дня», как было описано выше). При появлении высокого уровня напряжения U Таким образом, заданный способ регулирует требуемый фотопериод развития растений. Для каждого вида растений можно подобрать оптимальный режим «дня» и «ночи». При этом показатель преломления диэлектриков 14 (17) и 6 равны n1 и n2 соответственно, при этом, например, n2 Можно использовать керамику с режимом запоминания, который основан на гистерезисном характере зависимости поляризации (Р) от напряжения (U) управляющего электрического поля (Е). При этом обычное состояние с остаточной поляризацией - исходное (прозрачное), для деполяризации керамики 14 требуется импульс U=50-300 В (с длительностью = 1-10 мкс) и керамика переключается в другое состояние (непрозрачное). Для увеличения (перекрытия) площади освещения поляризованным светом предлагается коэффициент преломления (Кп) пленки отражателя изменять плавно или дискретно в пределах расширяющихся зон (углов) Брюстера (эффект Поккельса и т.д.). На диэлектрик 6 (подложку) напыляют пленку (17) (фиг.1б) поз.17). Чертежи фиг.1а) и фиг.1б) совмещены, отличаются позицией 17. Пленка представляет смесь компонентов, определяющих показатель преломления, например, от nn=1,4 до 2,4, который зависит от величины управляющего напряжения U (U=0, nn В этом случае дополнение к способу будет следующим: В качестве излучателя можно использовать светодиоды, электролюминесцентные осветители, точечные (дающие излучение в конусе) и т.д. светодиодные осветители дают диффузно-направленное излучение. Таким образом, применение нового способа позволит: повысить вегетацию и жизнестойкость растений (биообъектов); снизить потребление электрической энергии; уменьшить площади посева семян, что особенно важно для космических оранжерей летательных аппаратов. Кроме того, предлагаемый способ позволяет сделать процесс фотосинтетической деятельности растений управляемым и оптимальным. Формула изобретения1. Способ повышения вегетации и жизнестойкости растений, включающий подачу электромагнитного светового потока от излучателя, отличающийся тем, что световой поток или его часть поляризуют, смешивают с неполяризованным, если такой имеется, и отражают в направлении растений, например, в течение всего периода вегетации растений. 2. Способ по п.1, отличающийся тем, что падающий световой поток частично или полностью направляют в область угла Брюстера. 3. Способ по п.1 или 2, отличающийся тем, что в световом потоке или его части периодически изменяют плотность поляризации от минимальной, например, равной нулю, до максимальной. 4. Способ по п.3, отличающийся тем, что период изменения плотности поляризованного излучения устанавливают в зависимости, например, от вида растения. 5. Способ по п.1 или 2, отличающийся тем, что при интенсивности отраженного света не выше пороговой коэффициент преломления в нем пленки отражателя изменяют плавно или дискретно, например, в пределах выбранной расширенной угловой зоны Брюстера. 6. Способ по п.1, отличающийся тем, что падающий световой поток предварительно диффундируют, например, тем же отражателем или источником излучения. Популярные патенты: 2271092 Сортировка барабанного типа ... отсортированных фракций, расположенные под ячеистой сеткой, и приемный лоток. На раме посредством подшипников установлен вал со спиральным каркасом, на витках которого закреплен сменный сортирующий рабочий орган. Выходная кромка последней по ходу перемещения продукта секции выполнена косоугольной. Устройство снабжено натяжным средством для регулирования провисания ячеистой сетки. Сортирующий рабочий орган выполнен сменным с различным количеством секций, соответствующим количеству получаемых фракций, и размерами ячеек в них. Обеспечивает высокое качество сортирования, уменьшение повреждения продукции, надежность и простоту в эксплуатации. 4 з.п. ф-лы, 2 ил. Устройство относится ... 2391812 Способ выращивания растений в условиях защищенного грунта, устройство для выращивания растений в условиях защищенного грунта и сборно-разборный многоярусный стеллаж для выращивания растений в условиях защищенного грунта ... следующим образом.Стеллажные модули располагают парными рядами с технологическими проходами внутри каждой пары. В период освещения крайние секции пары модулей 10(а1), 10(а2), 10(в1), 10(в2) поворачивают к центру прохода, при этом образуется шестигранник. В центре шестигранника постоянно движется вверх-вниз лампа электродосвечивания. Использование заявляемой конструкции позволяет снизить потери светового излучения и обеспечить равномерность освещения растений. Для ухода за растениями крайние секции 10(а), 10(б) возвращают в исходное положение. Таким образом, рабочие проходы для ухода за растениями внутри каждой пары стеллажей совмещены с рабочим проходом для движения ламп, что ... 2115304 Доильный аппарат ... 5. Ковш 27, установленный на горизонтальной оси с возможностью поворота, шарнирно связан посредством тяги 28 с полым поршнем 29, который имеет поршневую камеру 30. Поршень имеет отверстия 31, 32, а стенки камеры патрубки 33 и 34. Причем поршневая камера 30 через отверстие 32 и патрубок 33 связана с атмосферой при нижнем крайнем расположении поршня, а через отверстие 31 и патрубок 34 с внутренней полостью молокосборник 5 при крайнем верхнем расположении поршня 29. Полость поршня 30 соединена с дополнительным пульсатором 2 воздуховодом 35. Доильный аппарат работает следующим образом. При подключении аппарата к вакуумпроводу воздух отсасывается из молокосборника 5 и камеры 20 ... 2235450 Малогабаритная машина для обескрыливания, очистки и сортирования лесных семян ... секции соответствует размеру семян средней фракции, а на валу обескрыливателя закреплены дополнительные щеточные элементы, радиальные штанги которых установлены по винтовой линии.На фиг.1 изображена малогабаритная машина для обескрыливания, очистки и сортирования лесных семян, общий вид; на фиг.2 - разрез по А-А на фиг.1.Малогабаритная машина для обескрыливания, очистки и сортирования лесных семян содержит раму 1, на которой крепятся все узлы. На цилиндрическом обескрыливателе 2, установленном на раме 1, закреплены верхний 3 и нижний 4 отсеки загрузочного бункера 5. Днище 6 верхнего отсека 3 выполнено под углом наклона большим, чем угол естественного откоса семян. Между отсеками ... 2201065 Приемная часть осевого сепаратора ... стойка для передней опоры сепарирующего ротора 6. На фиг. 1-3 представлен пример выполнения приемной части для молотильно-сепарирующего аппарата осевого потока или осевого сепаратора, однако специалисту понятно, что решение может быть легко использовано и в других областях применения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Приемная часть осевого сепаратора или обычного молотильно-сепарирующего аппарата с осевым потоком массы, содержащего по меньшей мере один сепарирующий ротор, который выполнен конусным в своей передней заборной части и сужается по направлению потока массы, и кожух ротора, причем по меньшей мере один сепарирующий ротор установлен вслед за однобарабанным или ... |
Еще из этого раздела: 2304875 Способ активации воды для полива при выращивании растений и устройство для его осуществления 2086081 Рабочий орган культиватора 2112337 Рабочий орган культиватора 2060650 Дозатор концентрированных кормов 2267924 Способ стимулирования роста растений 2403703 Способ интенсификации роста растений 2121263 Способ лесоводственной оценки технологического комплекса машин 2267897 Высевающий аппарат 2270545 Посевной комбинированный агрегат 2253964 Способ отделения семенной части урожая льна от стеблей и устройство для его осуществления |