Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Фотобиореактор

 
Международная патентная классификация:       A01G

Патент на изобретение №:      2451446

Автор:      Цыганков Анатолий Анатольевич (RU), Елизаров Евгений Евгеньевич (RU)

Патентообладатель:      Общество с ограниченной ответственностью "Фитосила-Биос" (RU)

Дата публикации:      27 Мая, 2012

Начало действия патента:      29 Сентября, 2010

Адрес для переписки:      105122, Москва, Щелковское ш., 5, ООО "Фитосила", Е.Е. Елизарову


Изображения





Изобретение относится к биотехнологии и может быть использовано для получения как биомассы микроводорослей, так и любых продуктов их жизнедеятельности. Фотобиореактор выполнен из светопрозрачного, химически и биологически инертного материала в виде плоской панели, составленной из параллельных каналов. Снизу и сверху выходы из каналов соединены общими емкостями из того же материала. В общих емкостях расположены порты для установки датчиков, измеряющих рН, температуру и содержание растворенного кислорода, и штуцеры для ввода добавок или отбора суспензии микроорганизмов. Внизу каждого четного канала светоприемной плоскости с одной стороны и нечетного канала с другой стороны установлены порты для ввода газовой смеси, чтобы суспензия внутри фотобиореактора двигалась за счет аэрлифта в половине каналов вверх, а в половине каналов вниз. Достигаемый технический результат заключается в улучшении газомассообменных характеристик, снижении амплитуды колебаний параметров культивирования и обеспечении более компактной структуры, где процесс фотосинтеза совмещен с процессом газомассообмена. 2 з.п. ф-лы, 7 ил.

Изобретение относится к биотехнологии и может быть использовано для получения биомассы фотосинтезирующих микроорганизмов, в частности микроводорослей, создания систем поглощения углекислоты, фотосинтетического получения кислорода, регенерации воздуха в помещениях с затрудненной вентиляцией, а также для получения других ценных продуктов жизнедеятельности фотосинтезирующих микроорганизмов.

Широко известны аппараты для выращивания микроводорослей (фотобиореакторы), состоящие из светоприемной части, выполненной в виде светопрозрачных трубок, побудителя движения жидкости (насоса или аэрлифта), а также газомассообменной системы (для обзора см. Цыганков, Лабораторные фотобиореакторы. Прикл. Биохим. Микробиол. (2001), 37, 4, с.387-397; Pulz, О., Photobioreactors: production systems for phototropic microorganisms (2001) Appl Microbiol Biotechnol 57, p.287-293).

Известен плоскостной фотобиореактор, состоящий из светоприемной части, побудителя движения жидкости и газомассобменной системы, у которого светоприемная часть выполнена в виде плоской панели из прозрачного материала, состоящей из параллельных каналов, расположенных в 2 ряда (О.Пульц. Плоскостной биореактор закрытого типа для продукции биомассы микроводорослей. Физиол. Раст. (1994), 41(2), с.292-298). Эти каналы соединяются параллельно или последовательно друг с другом, образуя единую трубчатую систему, по которой суспензия микроводорослей движется за счет побудителя движения. Последовательно со светоприемной частью устанавливают газомассообменную систему. Недостатком такой системы является пространственное разделение процессов фотосинтеза и отделения избытка кислорода/насыщения суспензии углекислотой. В результате культура фотосинтезирующих микроорганизмов в таком аппарате находится в циклически изменяющихся условиях (содержание кислорода и углекислоты, рН, окислительно-восстановительный потенциал, освещенность). Кроме того, светоприемная поверхность при длительном культивировании обрастает пленкой микроводорослей. Для очистки стенок светоприемной части трубчатых фотобиореакторов применяют поролоновые пыжи, которые собирают в пыжеуловителе и при необходимости пропускают по трубкам светоприемной части (Лукашин и др. А.с. СССР 1083944, 1984, бюл. 28, с.15-16). К сожалению, такой способ неприменим для плоскостных фотобиореакторов, в которых форма сечения каналов не является окружностью.

Ближайшим аналогом изобретения является фотобиореактор, описанный в патенте CN 101838606 A, опубл. 22.09.2010, который состоит из светоприемной части, освещаемой с одной или двух сторон и выполненной из светопрозрачного химически и биологически инертного материала, составленный из параллельных каналов, причем снизу и сверху выходы из каналов соединены общими емкостями, выполненными из того же материала, и в них расположены один или несколько штуцеров для ввода добавок или отбора суспензии микроорганизмов и вывода газа из фотобиореактора, а внизу части каналов установлены порты для ввода газовой смеси, чтобы суспензия внутри фотобиореактора двигалась за счет аэрлифта как вверх, так и вниз. К недостаткам указанного фотобиореактора следует отнести недостаточную равномерность подачи углекислоты и отбора избытка кислорода.

Целью настоящего изобретения является устранение недостатков прототипа и достижение технического результата, состоящего в улучшении газомассообменных характеристик, снижении амплитуды колебаний параметров культивирования и обеспечении более компактной структуры, где процесс фотосинтеза совмещен с процессом газомассообмена.

Указанный технический результат достигается в фотобиореакторе, содержащем светоприемную поверхность, освещаемую с одной или двух сторон и выполненную из светопрозрачного химически и биологически инертного материала, составленном из параллельных каналов, причем снизу и сверху выходы из каналов соединены общими емкостями, выполненными из того же материала, и в них расположены один или несколько штуцеров для ввода добавок или отбора суспензии фотосинтезирующих микроорганизмов и вывода газа из фотобиореактора, а внизу части каналов установлены порты для ввода газовой смеси, чтобы суспензия внутри фотобиореактора двигалась за счет аэрлифта как вверх, так и вниз, согласно изобретению, выполненном в виде плоской панели, в общих емкостях фотобиореактора расположены один или несколько портов для датчиков, измеряющих температуру, рН и содержание растворенного кислорода в суспензии фотосинтезирующих микроорганизмов, при этом порты для ввода газовой смеси установлены внизу каждого четного канала светоприемной поверхности с одной стороны и нечетного канала с другой стороны, что обеспечивает аэрлифтное движение в половине каналов вверх, а в половине каналов вниз.

В частных случаях воплощения, для очистки светоприемных поверхностей от биопленки внутри фотобиореактора располагают постоянный магнит сечением, примерно равным сечению каналов, покрытый мягким пористым химически и биологически инертным материалом и приводимый в движение внешним магнитным полем, при этом переход между светоприемной панелью и емкостями не имеет ступенек и резких изменений угла наклона плоскости для облегчения движения магнита.

Кроме того, для одновременной очистки нескольких светоприемных поверхностей каналов от биопленки внутри фотобиореактора располагают магниты по числу, равному или меньшему количества каналов, одновременно приводимые в движение внешним многополюсным магнитом, выполненным в виде полосы, у которой чередуются южные и северные полюса с шагом, равным сечению канала.

На фиг.1 схематично изображено устройство фотобиореактора, на фиг.2 - график изменения рН при вводе кислоты, на фиг.3 - график изменения содержания растворенного кислорода при смене подаваемой газовой смеси с воздуха на аргон, на фиг.4-5 - макет фотобиореактора после 3-х недель культивирования хлореллы, фиг.6-7 - очистка макета фотобиореактора с помощью магнита.

Фотобиореактор (фиг.1) состоит из светоприемной части (1), выполненной из светопрозрачного химически и биологически инертного материала (например, поликарбоната или оргстекла) в виде плоской панели, составленной из параллельных каналов. Снизу выходы из каналов соединены общей емкостью (2), а сверху - общей емкостью (3), выполненными из того же материала. В емкостях (2) и (3) расположены один или несколько портов (4) для датчиков, измеряющих значения температуры, рН, содержания растворенного кислорода в культуре фотосинтезирующих микроорганизмов, а также один или несколько штуцеров (5) для ввода необходимых жидкостных добавок или отбора проб суспензии микроорганизмов и отвода газа из фотобиореактора. Между верхней емкостью (3) и штуцером для отвода газа (5) установлено устройство механического пеногашения (6). Кроме того, внизу каждого четного канала светоприемной плоскости с одной стороны и нечетного канала с другой стороны установлены порты (7) для ввода газовой смеси. Внутри фотобиореактора располагают постоянный магнит (8), покрытый инертным материалом для предотвращения коррозии, а также мягким пористым материалом, используемым для протирки поверхностей (например, ткань из поливиниацетатного армированного волокна, используемая для протирки крашеных поверхностей автомобилей).

Фотобиореактор работает следующим образом. Перед началом работы в фотобиореактор устанавливают датчики, измеряющие значения температуры, рН, содержания растворенного кислорода, подсоединяют необходимые коммуникации: газовые линии, емкости для сред и приема урожая. Затем его заполняют стерилизующим раствором (например, 10-12% раствором гипохлорита) и стерилизуют. После стерилизации фотобиореактор несколько раз (обычно 3-5) промывают стерильной водой и заполняют стерильной питательной средой, специфичной для выращиваемого фотосинтезирующего микроорганизма. Затем доводят рН и температуру до требуемых значений, в каналы подают газовую смесь. Фотобиореактор освещают с одной или двух сторон любым источником освещения (например, солнечным светом, светодиодами, люминесцентными лампами, газоразрядными лампами на основе ртути или натрия и т.п.), пригодным по спектральному составу и интенсивности излучения для выращиваемого микроорганизма, и вводят суспензию микроорганизмов. Развивающаяся культура микроорганизмов насыщается углекислотой в каналах, куда подается газовая смесь, а избыток кислорода переходит из жидкости в газовую фазу. В каналах, где нет подачи газовой смеси, суспензия микроорганизмов, уже насыщенная углекислотой, движется сверху вниз за счет аэрлифта. Таким образом, предлагаемый фотобиореактор не требует дополнительно устройства газомассообмена и побудителя движения суспензии. Кроме того, в каналах, куда подается газовая смесь, газовые пузырьки, поднимаясь к поверхности, предотвращают обрастание поверхности пленкой фотосинтезирующих микроорганизмов, тем самым способствуя эффективному проникновению света внутрь фотобиореактора.

Тем не менее, в каналах, где не подается газовая смесь, а также в каналах с газовой смесью, возможно образование зон с ламинарным потоком суспензии, где происходит обрастание стенок биопленкой. Для снятия биопленки используют магнит (магниты) (8), приводя их в движение по каналу с помощью внешнего магнита (электромагнита) (на фиг.1 не указан) с достаточным для приведения в движение магнита (8) магнитным полем. Магнит (8), покрытый мягким химически и биологически инертным материалом, проходит по каналу и снимает биопленку. Сечение магнита должно быть близко к сечению канала по форме, а сечение магнита с учетом покрывающего материала должно быть примерно равно сечению канала. Если используется только один магнит, он при помощи внешнего магнита переводится из канала в канал вручную и последовательно очищает все каналы от биопленки. Если используется система магнитов, они располагаются на переходной поверхности между светоприемной поверхностью (1) и емкостью (3). Магниты (8) удерживаются на этой поверхности внешним многополюсным магнитом, выполненным в виде полоски с попеременным расположением северных и южных полюсов с шагом, равным ширине каналов. При необходимости очистить светоприемные поверхности, внешний многополюсный магнит вручную перемещают вдоль каналов, увлекая за ним магниты (8). После очистки поверхностей внешний многополюсный магнит возвращают в исходное положение, возвращая магниты (8), причем внешний многополюсный магнит не требует специальной фиксации, поскольку удерживается в исходном положении силой взаимодействия с магнитами (8). Для осуществления возможности очистки светоприемных поверхностей в процессе работы фотобиореактора без его разборки переходная поверхность между светоприемной поверхностью (1) и емкостями (2) и (3) не должна иметь ступенек и резких изменений угла наклона.

Пример 1

Для проверки массообменных характеристик фотобиореактора был изготовлен его макет на основе промышленно выпускаемого сотового поликарбоната толщиной 16 мм с прямоугольным сечением сот, расположенных в 2 ряда. Использовали отрезок из 35 пар сот с высотой 90 см, присоединив к панели нижнюю (2, фиг.1) и верхнюю (3, фиг.1) емкости объемом 0,9 л каждая. В нижней части панели из сотового поликарбоната установлены порты для ввода газа (в четные соты - каналы с одной стороны, и в нечетные - с другой). Созданный таким образом макет фотобиореактора с полезным объемом 10,24 л заполняли питательной средой для выращивания микроводорослей, содержащей (г/л): NH 4Cl - 0,5; MgSO47H2O - 0,02; СаСl 22Н2O - 0,01; KН2РО4 - 0,77; K2НРО4 - 1,44; NaHCO3 - 0,5; ЭДТА - 0,05; ZnSO47H2O - 0,022; H3BO3 - 0.0114; МnСl24Н 2O - 0,00506; FeSO47H2O - 0,00499; СаСl26Н2О - 0,00161; CuSO45H 2O - 0,00157; (NH4)6Mo7 O244H2O - 0,0011. pH полученной среды без титрования составлял 10,7. При подаче воздуха в качестве газовой фазы обнаружено, что устойчивое истечение воздуха из всех каналов начиналось при скорости его подачи 0,7 л/мин. При увеличении скорости подачи газовой фазы выше 2 л/мин обнаружено, что в некоторых каналах газовая фаза занимала почти полностью весь канал по высоте, то есть происходило неэффективное перемешивание газа и жидкости. Таким образом, рабочая скорость подачи газовой фазы лежит в диапазоне примерно 0,7-2,0 л/мин. Если в газовую фазу кратковременно (10 сек) добавить углекислый газ до 10% по объему, то рН смещался до значения 5,5 в течение около 30 сек после добавления (данные не приведены). Для проверки эффективности горизонтального перемешивания в реакторе в центр реактора снизу вводили датчик рН, а добавку кислоты (1 мл 1 N раствора) делали в нижнюю часть крайнего канала. Ход изменения рН приведен на фиг.2, из него видно, что более чем 95% ответ на такую несимметричную добавку достигался менее чем за 1700 сек. При этом изменения рН были монотонными, без осцилляции, что выгодно отличает описанный макет от петлевого фотобиореактора, у которого такая добавка приводила к осцилляциям рН в течение более чем 2000 сек (Цыганков, Лабораторные фотобиореакторы. Прикл. Биохим. Микробиол. (2001), 37, 4, с.387-397).

Для измерения газомассообменных характеристик (KLa) газовую фазу при скорости ее подачи 1 л/мин меняли с воздуха на аргон и измеряли кинетику изменения содержания растворенного кислорода (фиг.3, кривая в виде точек). Аппроксимацию полученной кривой (кривая в виде линии на фиг.3) проводили в соответствии с уравнением

dOi/dt=KLa(C*-O L),

где OL - концентрация растворенного кислорода, выраженная в микромолях, в данный момент;

С* - концентрация растворенного кислорода в начальный момент (232 мкМ);

KLa - коэффициент массопереноса из жидкости в газовую фазу.

Полученное путем аппроксимации значение KLa составляло 0.0036±0.00005 сек -1. Это значение примерно вдвое выше, чем описанное для трубчатого фотобиореактора 0,0015 (Tsygankov AA, Borodin VB, Rao KK, et al. Н2 photoproduction by batch culture of Anabaena variabilis ATCC 29413 and its mutant PK84 in a photobioreactor. Biotechnology And Bioengineering 1999 64(6):709-715), что подтверждает преимущества предлагаемого фотобиореактора.

Пример 2

Для демонстрации возможности очистки фотобиореактора с помощью магнита, расположенного внутри, описанный в примере 1 фотобиореактор использовали для культивирования хлореллы. Выращивание проводили в среде, описанной выше. рН среды (7,3) поддерживали с помощью внешнего регулятора рН, установив в фотобиореактор датчик рН Mettler Toledo InPro 3030 и подавая в среду углекислоту при повышении рН выше заданного значения. Освещение (50 Вт/м 2) при культивировании осуществляли с помощью панели светодиодов на основе световой ленты RoHS Dreamled 3528. Температуру регулировали автоматическим включением вентиляторов (30°С). После 3 недель культивирования (при разбавлении культуры каждые 3 дня свежей средой) культуру слили и заполнили фотобиореактор дистиллированной водой. Каналы фотобиореактора, в которые не подавали газовую фазу, покрылись пленкой из микроводорослей (фиг.4-5). В фотобиореактор был установлен магнит в виде диска толщиной 2 мм и диаметром 20 мм, покрытый искусственным материалом, используемым для протирки крашеных поверхностей автомобилей. При помощи внешнего магнита внутренний магнит вводили внутрь каналов и проводили вдоль них (фиг.5). В результате после прохода магнита поверхность канала очистилась, и в канале образовалась суспензия микроводорослей (фиг.6). Это свидетельствует о достижении полезного эффекта от использования постоянного магнита.

Формула изобретения

1. Фотобиореактор, состоящий из светоприемной поверхности, освещаемой с одной или двух сторон и выполненной из светопрозрачного химически и биологически инертного материала, составленный из параллельных каналов, причем снизу и сверху выходы из каналов соединены общими емкостями, выполненными из того же материала, и в них расположены один или несколько штуцеров для ввода добавок или отбора суспензии фотосинтезирующих микроорганизмов и вывода газа из фотобиореактора, а внизу части каналов установлены порты для ввода газовой смеси, чтобы суспензия внутри фотобиореактора двигалась за счет аэрлифта как вверх, так и вниз, отличающийся тем, что выполнен в виде плоской панели, в емкостях также расположены один или несколько портов для датчиков, измеряющих температуру, рН и содержание растворенного кислорода в суспензии фотосинтезирующих микроорганизмов, при этом порты для ввода газовой смеси установлены внизу каждого четного канала светоприемной поверхности с одной стороны и нечетного канала с другой стороны, что обеспечивает аэрлифтное движение в половине каналов вверх, а в половине каналов - вниз.

2. Фотобиореактор по п.1, отличающийся тем, что для очистки светоприемных поверхностей от биопленки внутри него располагают постоянный магнит сечением, примерно равным сечению каналов, покрытый мягким пористым химически и биологически инертным материалом и приводимый в движение внешним магнитным полем, при этом переход между светоприемной панелью и емкостями не имеет ступенек и резких изменений угла наклона плоскости для облегчения движения магнита.

3. Фотобиореактор по п.2, отличающийся тем, что для одновременной очистки нескольких светоприемных поверхностей каналов от биопленки внутри него располагают магниты по числу, равному или меньше количества каналов, и одновременно приводимые в движение внешним многополюсным магнитом, выполненным в виде полосы, у которой чередуются южные и северные полюса с шагом, равным сечению канала.





Популярные патенты:

2137365 Способ отпугивания биологических существ

... степень развития стресса, резко увеличивается. В зависимости от частоты повторения импульсов стрессовое состояние различается глубиной вплоть до летального исхода. При этом воздействие на грызунов и другие биологические существа осуществляется не только через органы зрения, но и через кожу, покровные ткани, слизистые оболочки и т.д., т.е. через всю поверхность. Преимущества предложенного способа по отношению к известным обусловлены совершенно иными механизмами воздействия на биологические вещества импульсного излучения широкого спектрального состава, а именно фотобиологическими, которые основаны на фотохимических реакциях, протекающих в клетках в результате поглощения ими ...


2171570 Устройство для группового учета надоев молока при доении

... доении, которое было бы надежно в работе, имело погрешность менее 3%, высокую пропускную способность и не оказывало влияния на свойства молока. Технический результат - увеличение пропускной способности дозатора, снижение погрешности дозирования, повышение надежности работы. Указанный технический результат при осуществлении изобретения достигается тем, что в известном устройстве для группового учета надоев молока при доении, содержащем приемную камеру (ПК), мерную камеру (МК), мерный резервуар (МР), кольцевые резиновые упоры, вакуумную трубку и сумматор, ПК сообщена с МК посредством гибкого молочного шланга, причем МК имеет межстенную камеру (МСК) с обратным клапаном, а МР с ...


2462864 Устройство составления экономичного кормового рациона и экономичного кормления животных и птиц

... корма в реальном времени.Известны способ и устройство для выращивания птицы, позволяющие управлять обогревом и кормлением птицы по величине принятого технико-экономического показателя прироста прибыли (см. патент РФ 2340172. Способ и устройство для выращивания птицы / А.В.Дубровин и др. // БИ, 2008. 34).Недостатком данного технического решения является отсутствие учета в реальном времени качественного и количественного состава (рациона) птичьего корма и соответствующей возможности рационально управлять им.Задачей изобретения является составление экономичного кормового рациона и экономичное кормление животных и птицы, автоматизированный поиск положения экономического ...


2256318 Инъектор для капельного орошения

... выходные отверстия в диаметрально ориентированных ребрах почвозацепов пористого корпуса.На фиг.3 - сечение Б-Б на фиг.1, вертикальный диаметральный разрез водовыпуска с расположенным в нем в крайнем верхнем положении регулирующим элементом с водозапорным клапаном и разноглубинные отверстия в другой паре ребер почвозацепов пористого корпуса.На фиг.4 - сечение В-В на фиг.3, горизонтальное сечение ребер пористого корпуса с пятью выходными отверстиями.На фиг.5 - сечение Г-Г на фиг.3, горизонтальное сечение ребер пористого корпуса в месте расположения трех выходных отверстий.На фиг.6 - сечение Д-Д на фиг.2, горизонтальное сечение ребер пористого корпуса с одним отверстием в ...


2120753 Способ получения пестицидного водного суспензионного концентрата и пестицидный водный суспензионный концентрат

... от вышеуказанных недостатков эмульгируемых концентратов, но по биологическому действию обычно уступают эмульгируемым концентратам. С другой стороны, суспензии представляют собой препараты, позволяющие избежать проблем, с которыми связано применение эмульгируемых концентратов и смачиваемых порошков. В последние годы были созданы суспензионные концентраты многих типов. Однако по биологическому действию суспензии неизбежно хуже эмульгируемых концентратов, хотя и не так, как смачиваемые порошки. Так, в частности, в случае использования слегка водорастворимого или водонерастворимого активнодействующего вещества по биологическому действию суспензии заметно уступают эмульгируемым ...


Еще из этого раздела:

2435369 Гербицидные композиции

2489835 Гнездовой высевающий аппарат для посева проросших семян овощных культур

2196403 Почвообрабатывающий модуль

2399200 Устройство для обработки роговых образований животных, например крупного рогатого скота

2245017 Способ подготовки картофеля перед закладкой на хранение

2400963 Передвижной перегрузчик для зерна сельскохозяйственных культур

2400960 Ориентирующее устройство для корнеплодов конической формы

2414113 Способ и комплекс для обработки зерна, семян или плодоовощной продукции озоном

2053664 Медогонка

2464780 Способ, устройство и компьютерный программный продукт для управления группой молочного скота