Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ повышения жизнеспособности птицы

 
Международная патентная классификация:       A01K

Патент на изобретение №:      2294097

Автор:      Мамукаев Матвей Николаевич (RU), Арсагов Вадим Анатольевич (RU), Тохтиев Тотраз Аликович (RU)

Патентообладатель:      Горский государственный аграрный университет (ГГАУ) (RU)

Дата публикации:      27 Февраля, 2007

Начало действия патента:      6 Октября, 2005

Адрес для переписки:      362040, РСО-Алания, г. Владикавказ, ул. Кирова, 37, Горский ГАУ, патентный отдел


Изображения





Способ включает предынкубационную обработку инкубационных яиц, развивающихся зародышей на 6, 12 и 18 день светом гелий-неонового лазера ЛГН-104, газоразрядной лампы ДНЕСГ-500, ртутно-кварцевой лампы ДРТ -400 в экспозициях на 3 мин. Предынкубационную обработку яиц, развивающихся зародышей на 6, 12 и 18 дни и суточных цыплят в том же режиме сочетали с дезинфекцией со всех сторон светом двух бактерицидных ламп БУВ - 15 номинальной мощностью 15 Вт и трех-БУВ-30 номинальной мощностью на поверхности яиц 30 Вт, длиной волны 254/800 нм в экспозициях по 3 мин. Повышается жизнеспособность и продуктивность птицы. 2 ил., 3 табл.

Изобретение относится к птицеводству и может быть использовано для повышения сохранности и продуктивности птицы.

Известен способ повышения жизнеспособности цыплят путем предынкубационной обработки яиц излучением четырех гелий-неоновых лазеров ОКК 12 длиной волны 632,8 нм, выходной мощностью 15 мВт/см 2, при котором стимулируются рост, развитие и показатели жизнеспособности потомства (Петров Е.Б. Применение лучей гелий-неонового лазера для стимуляции эмбриогенеза кур и повышения жизнеспособности цыплят. Автореф. дисс...канд. с.-х. н., М.: МВА, 1982. - 20 с.)

Известен способ стимуляции постэмбрионального развития сельскохозяйственной птицы путем предынкубационного облучения яиц светом гелий-неонового лазера ЛГН-104, газоразрядной лампы ДНЕСГ-500, ртутно-кварцевой лампы ДРТ-400 в экспозициях по 3 мин (Мамукаев М.Н. Физиологические показатели, выводимость и жизнеспособность цыплят-бройлеров при светолазерной активации яиц. Автореф. дисс...канд.б.н., Боровск, 1988. - 18 с.).

Недостатками известных способов являются низкие показатели жизнеспособности и продуктивности бройлеров, обработка яиц только перед закладкой их для инкубации и отсутствие дезинфекции эмбрионов лучистой энергией.

Цель изобретения повышение жизнеспособности и продуктивности птицы.

Эта цель достигается тем, что инкубационные яйца-аналоги перед закладкой для инкубации, зародышей на 6, 12, 18 день развития и выведенных суточных цыплят последовательно обогревают светом газоразрядной лампы ДНЕСГ-500 длиной волны 630-650 нм, средней дозой на поверхности яиц 23,1 эрг, облучают гелий-неоновым лазером ЛГН-104 длиной волны 632, 8 нм, плотностью мощности оптического потока на поверхности яиц 20 мэр/ч и единовременно обрабатывают со всех сторон двумя бактерицидными лампами БУВ-15 длиной волны 254/800 нм, номинальной мощностью 15 Вт и тремя бактерицидными лампами БУВ-30 длиной волны 254/800 нм, номинальной мощностью на поверхности яиц 30 Вт в экспозициях по 3 мин.

Облучение инкубационных яиц проводили в экспериментальной установке (см. Фиг.1), который представляет собой металлический каркас (1), на котором укреплены гелий- неоновый лазер ЛГН - 104 (2), стабилизатор лазера (3), электродвигатель сканирующего устройства (4), сканирующее устройство (5), газоразрядная лампа ДНЕСГ-500 (6), ультрафиолетовая лампа ДРТ-400 (7), блок питания лампы ДРТ-400 (8), ультрафиолетовые лампы БУВ-15 (9), редуктор (11), электродвигатель редуктора (10), приспособление для установления лотков с яйцами (12), транспортирующий механизм (14), пульт управления (15), пускатель КМЗ-2 (19), высоковольтный трансформатор (18), бактерицидная лампа БУВ-30 (21), дросселя лампы БУВ-30 (22).

Работа установки. С помощью пульта управления (фиг.2) подается напряжение на стабилизатор (3), тумблерами которого включается гелий- неоновый лазер ЛГН-104, кнопкой "Подсветка" - включается газоразрядная лампа ДНЕСГ-500. Тумблером ТВ-1 включается бактерицидные лампы БУВ-30, ТВ-2 - ультрафиолетовая лампа ДРТ-400, ТВ-3 - бактерицидные лампы БУВ-15. По истечению 5 минут тумблером ТВ-4 включается электродвигатель сканирующего устройства (5) и установка для светолазерной обработки и дезинфекции яиц готова к эксплуатации.

Лотки с инкубационными яйцами (13) или ящики с суточными цыплятами (20) ставятся на подставки (12). Кнопкой КМЗ-2 включается электродвигатель транспортирующего устройства (10), лотки подаются на цепной транспортер (14) и, передвигаясь в камере подсветки (17), при плавном переходе вначале обогреваются газоразрядной лампой ДНЕСГ-500 (6) и дезинфицируются со всех сторон бактерицидными лампами БУВ-30 (21), затем подвергаются воздействию излучения гелий-неонового лазера ЛГН-104 (2), ультрафиолетовой лампы ДРТ-400 (7) и бактерицидных ламп БУВ-15 (9), после чего выдаются на подставки для лотков (12) с противоположной стороны пульта управления.

Экспозиция облучения инкубационных яиц и суточных цыплят регулируется с помощью переключателя КМЗ-2.

Подобранных по принципу аналогов инкубационных яиц делили на 6 групп по 144 яиц, из которых 1 группу пропускали через конвейер при выключенных источника света и служила контролем, 2 группу обрабатывали излучением гелий-неонового лазера ЛГН-104 в экспозиции 3 мин, 3-светом газоразрядной лампы ДНЕСГ-500 в экспозиции 5 мин, 4-ультрафиолетом ртутно-кварцевой лампы ДРТ-400 в экспозиции 3 мин, 5-тремя бактерицидными лампами БУВ-30 со всех сторон по 3 мин, 6 группу вначале подвергали единовременному обогреву светом лампы ДНЕСГ-500 и дезинфекции бактерицидными лампами БУВ-30 со всех сторон, затем плавно переводили под облучение гелий-неонового лазера ЛГН-104 через сканирующее на десяти зеркальных плоскостях устройство, вращаемое электродвигателем со скоростью 1400 оборотов в минуту, после чего лоток с яйцом переводили в камеру для облучения ртутно-кварцевой лампой ДРТ- 400 и двух бактерицидных ламп БУВ-15.

В такой же последовательности, в тех же экспозициях обрабатывали развивающихся эмбрионов в возрасте 6, 12, 18 дней.

Анализ результатов сохранности бройлеров, полученных из яиц, обработанных лучистой энергией перед закладкой для инкубации, развивающихся зародышей на 6, 12, 18 дни инкубации и суточных цыплят по истечении 12 часов после вывода показывает (табл.1), что в процессе постнатального онтогенеза жизнеспособность опытных групп была выше, чем в контрольной группе.

В 2-недельном возрасте бройлеров более высокая сохранность группы, полученной при обработке яиц, зародышей и суточных цыплят светом гелий-неонового лазера, была выше относительно показателя контроля - на 2,33% (Р<0,01), бактерицидных ламп - на 2,54% (Р<0,05) и при комплексной обработке используемыми источниками света - на 4,87% (Р<0,01).

Таблица 1Сохранность бройлеров при лучистых воздействиях, n=100, гол. ГруппаВозраст птицы, дней  142842 561-контр. 94,4±1,7192,0±1,60 90,2±1,7189,0±1,71 2-опытн96,6±1,55 95,4±1,5695,0±1,89 94,8±1,84 3-опытн96,2±1,89 94,6±1,5893,4±1,89 92,6±1,444-опытн 97,0±1,7495,0±1,87 93,8±1,4593,6±1,55 5-опытн96,8±1,91 94,8±1,4093,8±1,84 92,8±1,71 6-опытн99,0±1,40 98,0±1,6097,4±1,95 97,2±1,84

Сохранность цыплят 4-недельного возраста к уровню контрольной группы составила при облучении зародышей светом гелий-неонового лазера - 103,70% (Р<0,05), газоразрядной лампы - 102, 83% (Р>0,05), ртутно-кварцевой лампы-103, 26% (Р>0,05), бактерицидных ламп - 103, 04% (Р<0,05) и комплексном воздействии- 106, 52% (Р&>,05).

В 6-недельном возрасте сохранность бройлеров, полученных из яиц, эмбрионов и суточных цыплят, обработанных комплексно, по сравнению с контрольной группой составила 107, 98% (Р<0,01) гелий-неоновым лазером - 105,32%, газоразрядной лампой-103, 99%, ртутно-кварцевой и бактерицидными лампами - 103,55%, а абсолютное повышение показателя было выше при воздействии светом гелий - неонового лазера на 4,8% (Р<0,01), газоразрядной лампой - на 3,2% (Р<0,05), ртутно-кварцевой лампой р>0,05, бактерицидными лампами - на 4, 00% (Р<0,05) и комплексное воздействие - на 7, 2% (Р<0,01).

К концу выращивания (8 недель) контрастность показателей сохранности проявилась более ярко и в опытных группах по сравнению с контрольной была выше на 4,04-9,21%, причем в группе комплексной обработки источниками красного и ультрафиолетового света она составила 9,2% (Р<0,001), воздействий гелий-неонового лазера - 6,52% (Р<0,01), ртутно-кварцевой лампы-5, 17% (Р<0,05), бактерицидных ламп - 4, 27% (Р>0,05) и газоразрядной лампы - 4,04% (Р<0,05). Различия сохранности бройлеров группы комплексной обработки птицы и других опытных групп не были пределом достоверности.

Результаты исследований динамики роста бройлеров показывают, что воздействие на птицу перед инкубацией, в процессе инкубирования и суточных цыплят лучистой энергией вызывает определенную ответную реакцию в росте бройлеров в постнатальном онтогенезе (табл.2, 3).

Среднесуточный рост живой массы контрольной группы бройлеров составил с 2 до 4 недель - 4,86 г, с 4 до 6 недель - 7,58; с 6 до 8 недель - 7,51 г.

Таблица 2Динамика среднесуточных приростов живой массы бройлеров при лучистых воздействиях, n=100, г.Группа Возраст птицы, дней  142842 561-контр. 13,69±0,1318,55±0,17 26,13±0,1333,64±0,17 2-опытн.15,19±0,14 22,17±0,1629,19±0,14 36,28±0,30 3-опытн.14,82±0,17 20,44±0,1827,06±0,19 34,65±0,144-опытн. 15,05±0,1621,98±0,20 28,69±0,1736,14±0,19 5-опытн.14,63±0,14 21,87±0,1627,7|±0,21 34,57±0,26 6-опытн.16,87±0,19 23,30±0,1830,73±0,21 37,92±0,17

По сравнению со среднесуточными приростами живой массы контрольной группы прирост живой массы бройлеров, полученных из яиц, зародышей и суточных цыплят, обработанных лазерным красным светом, составил - 110, 96% в 2-недельном возрасте 119, 51%, 111, 71 и 107, 85% соответственно в 4-, 6-, 8-недельном возрасте птицы при высокой степени достоверности. При обработке монохроматическим красным светом газоразрядной лампы среднесуточные приросты живой массы превосходили показатели контрольной группы на 8, 25%; 10, 19%; 3, 56 и 3, 00% соответственно в 2-; 4-; 6- и 8-недельном возрасте цыплят.

Применение ультрафиолетового света разных источников для предынкубационной, инкубационной обработки зародышей и суточных цыплят вызвал разнозначный эффект воздействия на среднесуточные приросты живой массы бройлеров. Если разница изучаемого показателя с контролем у 2-недельных бройлеров при применении ртутно-кварцевой лампы составили 9,93% (Р<0,001), бактерицидных ламп 6,87% (Р<0,05), в 4- и 6-недельном возрасте они сравнялись и составили 18,49 и 17,90% соответственно, то к концу выращивания (56 дней) энергия роста бройлеров, полученных с технологией применения ультрафиолета ртутно-кварцевой лампы, была выше и составила 7,43% (Р<0,001) против 2,76% (Р<0,01) в группе обработки птицы бактерицидными лампами.

Динамика среднесуточных приростов живой массы бройлеров, выведенных из яиц, обработанных комплексно оптимальными дозами излучения гелий - неонового лазера, газоразрядной, ртутно-кварцевой и бактерицидных ламп оказалось наиболее высокой у 2-, 4-, 6-, и 8-недельных бройлеров и составили относительно контроля +3,18 г; + 4,75; + 4,60 и + 4,28 г (Р<0,001). Аналогичные показатели в группе применения гелий-неонового лазера были + 1,68 г; + 1,13; + 1,54 и + 1,64 г; газоразрядной лампы + 2,05; + 2,86; + 3,76; и +3,27 г; ртутно-кварцевой лампы + 1,82 г; + 1,32; +2,04 и +1,78 г и бактерицидных ламп + 2,24 г; +1,43; +3,02 и 3,35 г при высокой достоверности (Р<0,001).

Динамика живой массы цыплят - бройлеров при лучистых воздействиях положительно согласуется с показателями среднесуточных приростов живой массы.

Живая масса 2-недельных бройлеров контрольной группы составила 231, 04 г, в группе бройлеров, выведенных из яиц, зародышей, а также суточных цыплят, обработанных гелий-неоновым лазером, была больше на 9, 89% (Р<0,001), газоразрядной лампой - на 7, 36 % (Р<0,001), ртутно-кварцевой лампой - на 9, 02% (Р<0,01), бактерицидными лампами - на 6, 15% (Р<0,05) и при их комплексном применении - на 20, 28% (Р<0,001), соответственно в 4-недельном возрасте-568, 78 г; 16,39%; 7,76; 15,44; 14,77 и 22,03% (Р<0,05-0,001), в 6-недельном - 1136,68 г; 11,28%; 3,61; 9,63; 5,94 и 17,22% (Р<0,05) и в конце выращивания - 1923,22 г; 7,78%; 3,31; 7,37; 2,76 и 12,58% (Р<0,01-0,001).

Таблица 3Динамика живой массы цыплят - бройлеров при лучистых воздействиях, n=100, г ГруппаВозраст птицы, дней  11428 42561-контр 39,38±0,42231,04±1,03 568,78±5,181136,68±6,24 1923,22±7,14 2-опытн.41,24±0,40 253,90±2,07662,00±4,73 1264,95±,852072,92±4,26 3-опытн.40,57±0,42 248,05±2,59612,89±4,17 1177,76±4,671986,97±5,16 4-опытн.41,19±0,52 251,89±2,48656,63±4,72 1246,17±5,752065,03±678 5-опытн.40,43±0,73 245,25±1,65652,79±4,14 1204,25±4,921976,35±5,24 6-опыгн41,71±0,54 277,89±1,60694,11±5,16 1332,37±4,392165,23±5,94

Таким образом, результаты среднесуточных приростов живой массы и живая масса бройлеров при комплексном применении лучистой энергии для обработки яиц перед инкубацией, развивающихся эмбрионов на 6, 12, 18 день и суточных цыплят оказывает положительное влияние на рост цыплят-бройлеров. Повышает среднесуточный прирост живой массы на 4,28 г, живую массу бройлеров - на 242 г.

Формула изобретения

Способ повышения жизнеспособности птицы, включающий предынкубационную обработку инкубационных яиц, развивающихся зародышей на 6, 12 и 18 день светом гелий-неонового лазера ЛГН - 104, газоразрядной лампы ДНЕСГ - 500, ртутно-кварцевой лампы ДРТ- 400 в экспозициях по 3 мин, отличающийся тем, что предынкубационную обработку яиц, развивающихся зародышей на 6, 12 и 18 дни и суточных цыплят в том же режиме сочетают с дезинфекцией со всех сторон светом двух бактерицидных ламп БУВ - 15 номинальной мощностью 15 Вт и трех - БУВ - 30 номинальной мощностью на поверхности яиц 30 Вт, длиной волны 254/800 нм в экспозициях по 3 мин.

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 07.10.2008

Дата публикации: 20.04.2011





Популярные патенты:

2450501 Способ повышения плодородия почвы на склонах

... совокупность существенных признаков заявляемого изобретения «Способ повышения плодородия почвы на склонах» не известна из уровня техники, что позволяет сделать вывод о соответствии, изобретения критерию "новизна". Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволил выявить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявляемом способе повышения плодородия почвы на склонах, изложенных в формуле изобретения. Следовательно, заявленное изобретение «Способ повышения плодородия почвы на склонах» соответствует ...


2464780 Способ, устройство и компьютерный программный продукт для управления группой молочного скота

... по меньшей мере, индивидуальный надой молока и потребленный рацион,где последующий индивидуальный надой молока рассчитывают при помощи модели на основании указанных данных,где для одного или более животного, по меньшей мере, один индивидуальный рацион и надой молока от отдельного молочного животного регулируют на стадии регулирования, задавая предварительные условия. 2. Способ по п.1, где предварительные условия включают прогнозируемый кормовой баланс для отдельного молочного животного более высокий после стадии регулирования по сравнению с кормовым балансом, применяемым перед стадией регулирования, где применяемый и прогнозируемый кормовые балансы соответственно равны отдаче ...


2456799 Ловушка для поимки животных, обитающих в земле

... пружина 9 переходит в сжатое состояние. Пользователь помещает концы рычагов 2 с флажками 5 под фиксатор 6. Концы рычагов 2, соединенные с задвижками 22, отодвигаются от кронштейнов 23, при этом первые пружины 25 растягиваются, а задвижки 22 поднимаются. Поднятые задвижки 22 полностью открывают проход в трубу 20.Животное заходит в трубу 20 и задевает сторожок 16. В случае использования сторожка 16 подвесного неустойчивый элемент 17 сторожка 16 поворачивается вокруг второй оси 18, при этом торец стержня 14 соскальзывает с торца неустойчивого элемента 17. В случае использования сторожка 16 цилиндрического цилиндры сторожка 16 падают, при этом торец стержня 14 соскальзывает с торца ...


2420945 Гидравлическая система сельхозмашины

... посредством регулируемого по давлению регулировочного насоса (32), соединенного с напорной гидролинией (29).13. Гидравлическая система по п.12, отличающаяся тем, что регулируемый по давлению регулировочный насос (32) выполнен в виде насоса регулируемой объемной подачи, причем объемная подача может регулироваться в зависимости от текущего давления на стороне питания напорной гидролинии (29) или посредством электрического устройства управления.14. Гидравлическая система по любому из пп.1, 2, 4-7, отличающаяся тем, что регулировочный насос (32) приводится от двигателя внутреннего сгорания, причем при запуске двигателя внутреннего сгорания регулировочный насос может ...


2175833 Охладитель молока с аккумулятором холода

... и размещенными в ней сосудами с жидкостью, имеющей температуру замерзания (плавления) более высокую, чем у теплоносителя. Выход из аккумулятора холода сообщен с насосом, обеспечивающим подачу теплоносителя последовательно на вход в теплообменный тракт холодного спая термоэлектрического блока и на вход в тракт теплоносителя теплообменника. На выходе из аккумулятора холода установлен вентиль. Изобретение обеспечивает сокращение времени охлаждения молока за счет использования наряду с холодом, вырабатываемым термоэлектрическим блоком, холода, аккумулированного льдом с высокой удельной теплотой плавления. 1 з.п.ф-лы, 3 ил. Изобретение относится к холодильной технике для ...


Еще из этого раздела:

2076594 Установка для промышленного разведения дождевых червей

2451442 Способ обогащения селеном овощей и злаков

2071371 Способ нагрева тканей животного и устройство для его осуществления

2060618 Пневматический высевающий аппарат

2164741 Устройство для заготовки древесины

2171570 Устройство для группового учета надоев молока при доении

2050341 Устройство для переработки органического субстрата в биогумус

2093016 Устройство для водоподачи

2209542 Контейнер

2182420 Устройство для перерезания стволов деревьев