Изобретения в сфере сельского хозяйства, животноводства, рыболовства

 
Изобретения в сельском хозяйстве Обработка почвы в сельском и лесном хозяйствах Посадка, посев, удобрение Уборка урожая, жатва Обработка и хранение продуктов полеводства и садоводства Садоводство, разведение овощей, цветов, риса, фруктов, винограда, лесное хозяйство Новые виды растений или способы их выращивания Производство молочных продуктов Животноводство, разведение и содержание птицы, рыбы, насекомых, рыбоводство, рыболовство Поимка, отлов или отпугивание животных Консервирование туш животных, или растений или их частей Биоцидная, репеллентная, аттрактантная или регулирующая рост растений активность химических соединений или препаратов Хлебопекарные печи, машины и прочее оборудование для хлебопечения Машины или оборудование для приготовления или обработки теста Обработка муки или теста для выпечки, способы выпечки, мучные изделия

Способ производства формованных субстратов из торфа

 
Международная патентная классификация:       A01G

Патент на изобретение №:      2013944

Автор:      Краснов С.А., Петров Ю.О., Щипитин Е.А.

Патентообладатель:      Всесоюзный научно-исследовательский институт торфяной промышленности

Дата публикации:      15 Июня, 1994


Изображения





Использование: в сельском хозяйстве, в частности в производстве формованных субстратов на основе торфомасс для выращивания рассады овощей, цветочных и лесных культур. Сущность изобретения: способ предусматривает приготовление торфомассы, ее формование и сушку при 80 - 100В°С с одновременной обработкой импульсным электромагнитным полем токов высокой частоты с последовательным снижением скважности импульсов электрического поля с 10 до 3 при периоде их следования 15 - 45 с до достижения влажности субстрата 70 - 75 % . Затем температуру теплоносителя увеличивают до 230 - 250 В°С с одновременным снижением электрической составляющей напряженности поля тока высокой частоты в 2 - 4 раза. На выходе температуру теплоносителя постепенно снижают до 30 - 40 В°С. 5 табл.

Изобретение относится к производству формованных субстратов на торфяной основе/ используемых для выращивания рассады овощных/ цветочных/ лесных и других культур в защищенном и открытом грунте/ а также для создания декоративных газонов.

Известен способ производства формованных субстратов из торфа/ включающий приготовление торфомассы/ ее формование и сушку. Сушку осуществляют при температуре сушильного агента 100 + 160С в течение 2/25-2 ч/ а высушенный субстрат подвергают отлежке в течение 8/0-15/0 ч для выращивания влажности/ после чего процесс сушки и отлежки повторяют до содержания влаги в субстрате 35-60%/ причем время последующей отлежки увеличивают до 30-50 ч.

Данный способ предполагает большую продолжительность циклов последовательного чередования сушки (0/5-4/0 ч) и отлежки (38-65 ч) субстратов/ что приводит к усложнению всего технологического процесса и небходимости наличия значительных производственных площадей.

Известен также выбранный в качестве прототипа способ производства формованных субстратов из торфа/ включающий приготовление торфомассы/ ее формирование и последующую сушку/ которую осуществляют при температуре теплоносителя 200-230С до образования на поверхности субстрата оболочки толщиной 10-15 мм с влажностью 15-20% . Недостатком данного способа является сравнительно низкое качество потребительских свойств формованных субстратов. Образующаяся в результате сушки поверхностная оболочка субстрата теряет присущую торфу водопоглотительную способность/ что затрудняет увлажнение субстратов при использовании. При конвективной сушке наличие градиента влагосодержания по толщине субстрата вызывает их деформацию. После сушки субстраты (торфоблоки)/ как правило/ имеют поверхность/ вогнутую со стороны посадочных ячеек/ что затрудняет их упаковку/ транспортировку и укладку на местах использования.

Кроме того/ недостатком известного способа является высокая продолжительность сушки/ составляющая 30-50 ч. Интенсивное испарение влаги происходит лишь в начальный период сушки субстратов/ а затем скорость испарения резко падает вследствие уменьшения интенсивности внутреннего тепломассообмена.

Образующаяся оболочка играет роль каркаса/ сохраняющего форму торфоблока после насыщения его влагой при использовании в теплицах. Однако/ оболочка торфоблока имеет высокое тепловое сопротивление/ что затрудняет подвод тепла от наружной поверхности высушиваемого материала к внутренним слоям/ являющимися зоной испарения/ что увеличивает энергозатраты на удаление влаги.

Целью изобретения является повышение качества субстратов путем сохранения их высокой водопоглотительной способности и сокращение продолжительности сушки.

Указанная цель достигается тем/ что в известном способе производства формованных субстратов из торфа/ включающем приготовление торфомассы/ ее формование и сушку с температурой теплоносителя 80-100С/ сушку субстратов производят при одновременном воздействии теплоносителя и импульсного электромагнитного поля токов высокой частоты с последовательным уменьшением скважности импульсов поля ТВЧ с 10 до 3 при периоде их следование 15-45 с до достижения влажности субстратов 70-75% / после чего увеличивают температуру теплоносителя до 230-250С с одновременным снижением напряженности поля ТВЧ в 2-4 раза и производят последовательное снижение температуры теплоносителя до 30-40С на выходе.

Перечисленные выше существенные признаки в совокупности отличают предлагаемое решение от прототипа и обуславливают соотвествие этого решения критерию "новизна". Анализ известных технических решений в области сушки торфа и других капиллярно-пористых материалов позволяет сделать вывод об отсутствии в них признаков/ сходных с существенными отличительными признаками в предлагаемом способе производства формованных субстратов/ и признать предлагаемое решение соотвествующим критерию "существенные отличия".

Сущность способа заключается в следующем.

Верховой торф-сырец степенью разложения 10-15% и влажностью 91-92% / отсепарированный от древесных включений/ мерзлоты и очеса/ подвергают измельчению и расчесыванию волокон растений -- торфообразователей. Отсепарированный и измельченный торф подается в лопастной смеситель/ где в него добавляют известковые материалы для нейтрализации избыточной кислотности и перемешивают с водой до достижения влажности 98-95%.

Приготовленная торфомасса поступает в пресс/ где из нее формуются субстратные блоки толщиной от 50 до 100 мм в зависимости от удельной загрузки. Влажность торфоблоков после формования составляет 84-89 % .

В сформованный субстрат методом полива вводится раствор минеральных удобрений - азота/ фосфора/ калия и микроэлементов. Затем блоки подаются в конвейерную конвективно-высокочастотную сушильную установку.

Сушку производят путем одновременного воздействия на сформованные субстраты теплоносителя с температурой 80-100С и импульсного электромагнитного поля токов высокой частоты напряженностью электрической составляющей 600-800 В/см с последовательным уменьшением скважности имрульсов поля ТВЧ с 10 до 3 при периоде их следования 15-45с до достижения влажности субстрата 70-75% .

В табл. 1/ 2 и 3 приведены экспериментальные данные по установлению оптимальных режимов воздействия импульсного поля ТВЧ на формованные субстраты в процессе первой стадии сушки. Опыты проводились с формованными субстратами стандартной толщины - 50 мм.

Максимальная толщина напряженности - 800 В/см/ исключающая возможность электрического пробоя материала. В процессе сушки периодически контролировался показатель влажности сушимых субстратов. В табл.1 приведены данные/ характеризующие продолжительность сушки формованных субстратов до влажности W1= 70% в зависимости от диапазона уменьшения скважности импульсов поля ТВЧ при напряженности электрической составляющей 400-800 В/см.

При последовательном уменьшении скважности импульсов поля ТВЧ с 10 до 3 и при всех значениях напряженности поля продолжительность сушки будет минимальная 0/27-0/32 ч/ что указывает на наиболее благоприятное сочетание режимов влагопереноса и теплового воздействия в сушильных субстратах/ Несколько большая продолжительность сушки субстратов наблюдается в диапазонах/ сохраняющих близкую к оптимальному значению пропорциональность (12/5/ 10/5/ 8/3). Что же касается меньших (12/8/ 10/8/ 8/5) и больших (12/2, 8/1) амплитуд уменьшения скважности/ то продолжительность сушки при этом значительно возрастает. В первом случае - от уменьшения теплового воздействия/ во втором - от снижения интенсивности влагопереноса.

В табл. 2 приведены данные/ характеризующие влагоперенос , мл/минм в сушимом материале от длительности следования импульсов (Т/ сек) поля ТВЧ при напряженности поля 600 В/см и амплитуде снижения скважности импульсов 10-3.

Как видно из табл. 2 влагоперенос в сушимом материале достигает максимальной величины 606-638 мл/минм2/ что говорит об интенсивной миграции влаги из внутренней части субстрата к его поверхности.

При периодичности следования импульсов менее 15 с велечина влагопереноса уменьшается за счет интенсивного парообразования внутри субстратов/ затрудняющего процесс фильтрации.

При периодичности следования импульсов более 45 с также происходит уменьшение влагопереноса за счет повышения влияния наведенного фильтрационным потоком противоположно направленного электрического поля (эффект Квинке).

В табл. 3 приведены данные о продолжительности первого этапа сушки (T1/ час) и суммарные энергозатраты на сушку 1 м3 торфоблоков толщиной 50 мм до конечного влагосодержания субстратов W2= 50% (по этапам) в зависимости от его влагосодержания на конец первого этапа сушки.

При сушке формованных субстратов до влагосодержания 70-75% продолжительность первого этапа сушки составит 0/24-0/29 ч при энергозатратах 2990-3294 МДж/м3. Для того/ чтобы высушить эти субстраты до влажности конечного продукта (W2= 50%) потребуется еще соотвественно 1642 и 1468 МДж/м3/ при этом общие энергозатраты составят 4682 и 4762 МДж/м3.

При сушке формованных субстратов на первом этапе до большего или меньшего влагосодержания заметно увеличиваются общие энергозатраты. Так/ при сушке формованных субстратов до W1= 80% / несмотря на меньшую продолжительность сушки первого этапа/ существенно увеличивается продолжительность сушки второго этапа при общих энергозатратах 4942 МДж/м3. При сушке до W1= 65% - наблюдается обратная закономерность.

После завершения первой стадии сушки/ в результате которой влажность формованных субстратов достигла 70-75% / увеличивают температуру теплоносителя до 320-250С с одновременным снижением напряженности электрической составляющей поля ТВЧ до 150-400 В/см и производят последовательное снижение температуры теплоносителя до 30-40С на выходе.

В табл. 4 и 5 представлены результаты экспериментальной проверки параметров сушки второго этапа.

В табл. 4 приведены данные продолжительности второго этапа сушки (T2) и полной влагоемкости конечного продукта (%) в зависимости от режимов снижения теплового воздействия.

При повышении температуры теплоносителя на втором этапе сушки до 230-250С и последовательном ее снижении до 30-40С на выходе готового продукта наблюдается оптимальное сочетание показателей продолжительности сушки (0/7-0/79 ч) и полной влагоемкости конечного продукта (446-465%).

При повышении начальной температуры теплоносителя до 200С с последующим ее снижением до 20-50С во всем диапазоне температур увеличивается продолжительность сушки/ составляя 0/9-1/12 ч/ что объясняется снижением интенсивности теплового воздействия.

При повышении начальной температуры теплоносителя до 260С с последующим ее снижением до того же диапазона/ несмотря на сравнительно меньшую продолжительность сушки значительно снижается водопоглотительная способность конечного продукта/ что объясняется достаточно интенсивным тепловым воздействием на формованные субстраты/ приводящим к частичной пересушке их наружной поверхности.

Во всем диапазоне начальных температур (220-260С) второго этапа сушки прослеживается следующая закономерность.

При последовательном снижении начальной температуры до 50 С и выше на выходе влагоемкость конечного продукта оказывается существенно ниже/ чем этот же показатель у более низких температур на выходе/ что объясняется сравнительно жестким режимом теплового воздействия на сушимые субстраты/ приводящим к частичной пересушке торфа. И/ наоборот/ при последовательном снижении начальной температуры ниже 30С конечный продукт приобретает наиболее благоприятные водопоглотительные свойства/ но при этом существенно увеличивается продолжительность сушки.

В табл. 5 приведены данные экспериментальной проверки влияния напряженности электрической составляющей поля ТВЧ (U) на продолжительность II этапа сушки (T2) и удельные энергозатраты на процесс сушки.

Наложение поля различной напряженности проводилось в диапазоне снижения температуры теплоносителя с 240С до 40С.

Как показала проверка при совместном воздействии на формирование субстраты теплоносителя с амплитудой снижения температуры с 240 до 40и поля ТВЧ с напряженностью электрической составляющей 150-400 В/см (т.е. снижения в 2-4 раза по сравнению с первым этапом сушки) происходит сокращение продолжительности сушки до 0/56-0/65 ч при минимальных удельных энергозатратах.

При напряженности электрической составляющей поля свыше 400 В/см/ несмотря на некоторое сокращение продолжительности сушки существенно возрастают удельные энергозатраты/ а при напряженности/ близкой к 800 В/см - наблюдается интенсивное термическое воздействие на субстрат/ что приводит к снижению водопоглотительной способности конечного продукта и снижению его качества.

При напряженности поля менее 150 В/см значительно возрастает продолжительность сушки и увеличиваются удельные энергозатраты.

Использование предлагаемого способа с двухэтапной сушкой формованных субстратов позволяет на первом этапе путем комбинированного воздействия теплоносителя с умеренной температурой и импульсного магнитного поля ТВЧ с указанными параметрами осуществить интенсивный процесс влагопереноса из внутренней части формованных субстратов к его наружной поверхности/ обеспечивая равномерную влагонасыщенность субстратов по всему их сечению.

Повышение температуры теплоносителя до 230-250С с одновременным снижением напряженности поля ТВЧ в 2-4 раза и последующим равномерным снижением температуры теплоносителя до 30-40С на втором этапе сушки позволяет осуществить более мягкий режим сушки с сохранением высоких показателей влагоемкости формованных субстратов - одного из важнейших агрофизических свойств готовой продукции.

Кроме того/ двухэтапная сушка с указанными параметрами/ граница этапов которой фиксируется показателем влажности сушильного материала 70-85% / позволяет сократить общую продолжительность сушки.

Формула изобретения

СПОСОБ ПРОИЗВОДСТВА ФОРМОВАННЫХ СУБСТРАТОВ ИЗ ТОРФА, включающий приготовление торфомассы, ее формование и сушку с температурой теплоносителя 80 - 100oС, отличающийся тем, что сушку субстратов производят при одновременном воздействии теплоносителя и импульсного электромагнитного поля токов высокой частоты с последовательным уменьшением скважности импульсов электрического поля с 10 до 3 при периоде их следования 15 - 45 с до достижения влажности субстратов 70 - 75%, после чего температуру теплоносителя увеличивают до 230 - 250oС при одновременном снижении электрической составляющей напряженности поля тока высокой частоты в 2 - 4 раза, а на выходе температуру теплоносителя постепенно снижают до 30 - 40oС.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 00

Номер и год публикации бюллетеня: 27-2000

Извещение опубликовано: 27.09.2000        





Популярные патенты:

2149547 Пневматический опрыскиватель

... передачи, воздушного распределителя, воздухопроводов, крана-регулятора расхода рабочей жидкости, подачи рабочей жидкости из резервуара за счет избыточного давления подаваемого в него воздуха и применения пневматического распыливающего наконечника, состоящего из полого цилиндрического корпуса с воздушным патрубком в центре его верхней части и с расположенным внутри корпуса диспергирующим устройством, имеющим в центре осевой канал, соединяющийся посредством патрубка с питающей магистралью, и отходящие от осевого канала радиальные каналы, соединяющиеся с сопловыми отверстиями, расположенными в диспергирующем устройстве вокруг осевого канала, причем число радиальных каналов ...


2407282 Способ выращивания корнесобственных саженцев винограда и машина для его осуществления

... 0,6 0,8 м. При температуре воздуха выше +40°С на светопроницаемую пленку опрыскиванием наносят побелку. Машина для формирования гребней для выращивания корнесобственных саженцев винограда содержит раму, кронштейны навески на тяги агрегатируемого трактора и опорные колеса. Машина снабжена последовательно установленными на раме с возможностью переустановки по глубине обработки и ширине захвата стойками рыхлителей, сферическими дисковыми рабочими органами, левым и правым отвалами, прикатывающим гладким цилиндрическим катком, валом с кассетами гибких поливных трубопроводов, направителями гибких поливных трубопроводов, бункером для золы с имеющим привод от опорного колеса ...


2153256 Инсектицидное средство и способ борьбы с вредителями сельскохозяйственных культур

... выявлены нашими исследованиями. Поэтому можно сделать вывод о соответствии группы заявляемых изобретений критерию патентоспособности "Изобретательский уровень". Заявляемые технические решения соответствуют и критерию патентоспособности "Промышленная применимость", т.к. могут быть использованы в сельском хозяйстве. При этом ниже будут описаны средства и методы, с помощью которых возможно осуществление заявляемых изобретений в том виде, как они охарактеризованы в формуле изобретений. Необходимо отметить, что при создании предлагаемого средства исходили не только из доступности и относительной дешевизны отечественного препарата - карбофоса, а также и из его отношения к классу ...


2049387 Инкубатор индивидуального пользования

... 17, установленная на среднем кривошипе 9, воздействует на шток 28, имеющий продольный паз, установленный на пластине кривошипа 9. Подушка 29 штока имеет возможность скольжения по дугообразному вырезу коромысла 16. Эти конструктивные признаки приведены для пояснений, они не являются существенными и не заявляются. Приспособление 6 для переворачивания яиц функционирует следующим образом. Нагреватель 2, образующий с регулятором 3 (см. фиг.2) автоматическую систему терморегулирования, обеспечивает поддержание температуры инкубации, например, температуры 37,70,5оС. Для этого в нагреватель 2 с выхода усилителя, входящего в регулятор 3, подается ток, определяемый сигналом термодатчика, ...


2473366 Вещество, обладающее антимикробным действием

... и золь-гель методы также необходимо упомянуть как особенно подходящие способы напыления. Если слои напыляют на металлы, то предпочтительными являются обычные материалы для имплантатов, такие как титан, железо и кобальт, а также их сплавы. В случае керамических субстратных материалов также предпочтительно исходить из традиционных материалов, таких как ZrO2 и Аl2О3, чистота которых выше 99 мас.%. Слои также можно напылять на стекло или стеклокерамику.Как уже упоминалось, эффективность повышается, если поверхность вещества максимально велика относительно водной среды. Особенно хорошие результаты могут быть достигнуты, если слой обладает губчатой пористой структурой с размером ...


Еще из этого раздела:

2270545 Посевной комбинированный агрегат

2387127 Способ мелиорации в предгорной зоне и система для его реализации

2019938 Рабочий орган почвообрабатывающей машины

2192734 Устройство для производства прессованных кип из корней лекарственных растений

2464780 Способ, устройство и компьютерный программный продукт для управления группой молочного скота

2498561 Способ тандемного возделывания сельскохозяйственных культур для повышения производства пищевых зерновых культур

2201910 Устройство для ферментационной обработки жидкого навоза

2091380 Производные пиколиновой кислоты или их кислотно-аддитивные соли, способ их получения, нербицидная композиция и способ борьбы с сорняками

2124290 Препаративная форма в виде раствора для местного применения для обработки животных (варианты), способ получения и способ обработки животных (варианты)

2217912 Способ проведения контрольного лова молоди пелагических рыб, в частности лососевых, и обкидной невод